[1] Cao X. Regulating mine land reclamation in developing countries: The case of China. Land Use Policy, 2006, 24: 472-483 [2] Li PF, Zhang XC, Hao MD, et al. Effects of vegetation restoration on soil bacterial communities, enzyme activities, and nutrients of reconstructed soil in a mining area on the Loess Plateau, China. Sustainability, 2019, 11: 22-95 [3] Guo YN, Liu XH, Tsolmon B, et al. The influence of transplanted trees on soil microbial diversity in coal mine subsidence areas in the Loess Plateau of China. Global Ecology and Conservation, 2020, 21: e00877 [4] Li JJ, Zhou XM, Yan JX, et al. Effects of regenerating vegetation on soil enzyme activity and microbial structure in reclaimed soils on a surface coal mine site. Applied Soil Ecology, 2015, 87: 56-62 [5] 张新生, 卢杰, 张新军. 土壤微生物与植被互作的研究进展. 绿色科技, 2023, 25(8): 82-86 [6] Kohler J, Caravaca F, Azcón R, et al. Suitability of the microbial community composition and function in a semiarid mine soil for assessing phytomanagement practices based on mycorrhizal inoculation and amendment addition. Journal of Environmental Management, 2016, 169: 236-246 [7] Brookes PC, Mcgrath SP. Effect of metal toxicity on the size of the soil microbial biomass. Journal of Soil Science, 1984, 35: 341-346 [8] Cruz PC, Wallander H, Kjller R, et al. Using community trait-distributions to assign microbial responses to pH changes and Cd in forest soils treated with wood ash. Soil Biology and Biochemistry, 2017, 112: 153-164 [9] 王安宁, 黄秋娴, 李晓刚, 等. 冀北山区不同植被恢复类型根际土壤细菌群落结构及多样性. 林业科学, 2019, 55(9): 130-41 [10] 杨贤房, 郑林, 马永杰. 鄱阳湖沙地不同植被恢复措施下土壤细菌群落特征. 应用与环境生物学报, 2022, 28(4): 1027-1033 [11] Kozich JJ, Westcott SL, Baxter NT, et al. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Applied and Environmental Microbiology, 2013, 79: 5112-5120 [12] 游萍, 肖群英, 薛晓辉, 等. 不同植被对煤矿复垦区域土壤真菌多样性和酶活性的影响. 热带作物学报, 2022, 43(10): 2167-2179 [13] 秦红, 任庆水, 杨文航, 等. 三峡库区城乡消落带人工植被恢复土壤放线菌多样性特征. 环境科学, 2017, 38(5): 2065-2073 [14] 王晓彤, 许旭萍, 王维奇. 模拟酸雨对福州平原稻田土壤真菌群落结构及多样性影响. 环境科学学报, 2019, 39(7): 2249-2259 [15] 张坤, 包维楷, 杨兵, 等. 林下植被对土壤微生物群落组成与结构的影响. 应用与环境生物学报, 2017, 23(6): 1178-1184 [16] 陆继财, 张金风. 乔木对岩土体的综合作用研究综述. 公路, 2017(4): 305-315 [17] Hedges LV, Gurevitch J, Curtis PS. The meta-analysis of response ratios in experimental ecology. Ecology, 1999, 80: 1150-1156 [18] Yue K, Frenne D, Fornara DA, et al. Global patterns and drivers of rainfall partitioning by trees and shrubs. Global Change Biology, 2021, 27: 3350-3357 [19] Calcagno V, Claire DM. glmulti: An R package for easy automated model selection with (generalized) linear models. Journal of Statistical Software, 2010, 34: 1-29 [20] Wagenmakers EJ , Farrell S. AIC model selection using Akaike weights. Psychonomic Bulletin and Review, 2004, 11: 192-196 [21] Yue K, De FP, Van MK, et al. Litter quality and stream physicochemical properties drive global invertebrate effects on instream litter decomposition. Biological Reviews, 2022, 97: 2023-2038 [22] 徐佳晶, 邵鹏帅, 张教林, 等. 西双版纳不同森林类型土壤微生物生物量的变化. 土壤通报, 2017, 48(1): 94-100 [23] 田耀武, 和武宇恒, 翟淑涵, 等. 陶湾流域草本植物土壤及土壤微生物量碳氮磷生态化学计量特征. 草地学报, 2019, 27(6): 1643-1650 [24] Liu GY, Chen LL, Shi XR, et al. Changes in rhizosphere bacterial and fungal community composition with vegetation restoration in planted forests. Land Degradation and Development, 2019, 10: 30-35 [25] Zuo XA, Wang SK, Lv P, et al. Plant functional diversity enhances associations of soil fungal diversity with vegetation and soil in the restoration of semiarid sandy grassland. Ecology and Evolution, 2016, 6: 318-328 [26] 袁春阳, 李济宏, 韩鑫, 等. 树种对土壤微生物生物量碳氮的影响: 同质园实验. 植物生态学报, 2022, 46(8): 882-889 [27] Liang YM, Li MJ, Pan FJ, et al. Alkaline phosphomonoesterase-harboring microorganisms mediate soil phosphorus transformation with stand age in Chinese Pinus massoniana plantations. Frontiers in Microbiology, 2020, 11: 571209 [28] 朱谧远, 岩晓莹, 郭天崎, 等. 黄土高塬沟壑区陡坡地典型植被不同恢复年限土壤物理性质比较研究: 以陕西长武王东沟为例. 矿物岩石地球化学通报, 2022, 41(5): 1033-1040 [29] 张艳, 李勋, 宋思梦, 等. 马尾松与乡土阔叶树种凋落叶混合分解过程中微生物生物量特征. 生态环境学报, 2021, 30(4): 681-690 [30] 卞莹莹, 张志敏, 付镇, 等. 荒漠草原区不同植被恢复模式土壤微生物菌落分布特征及其与土壤理化性质的相关性. 草地学报, 2021, 29(4): 655-663 [31] 郑炀, 孙学广, 熊洋阳, 等. 叶际微生物对马尾松凋落针叶分解的影响. 植物生态学报, 2023, 47(5): 687-698 [32] Xiong L, Liu XY, Vinci G, et al. Molecular changes of soil organic matter induced by root exudates in a rice paddy under CO2 enrichment and warming of canopy air. Soil Biology and Biochemistry, 2019, 137: 107544 [33] 张青, 王辰, 孙宗湜, 等. 土壤微生物生物量及多样性影响因素研究进展. 北方园艺, 2022(1): 116-121 [34] 吴晓玲, 张世熔, 蒲玉琳, 等. 川西平原土壤微生物生物量碳氮磷含量特征及其影响因素分析. 中国生态农业学报, 2019, 27(10): 1607-1616 [35] 许淼平, 任成杰, 张伟, 等. 土壤微生物生物量碳氮磷与土壤酶化学计量对气候变化的响应机制. 应用生态学报, 2018, 29(7): 2445-2454 [36] Vries D, Franciska T, Ashley S. Controls on soil microbial community stability under climate change. Frontiers in Microbiology, 2013, 4: 265 [37] 王宁, 王美菊, 李世兰, 等. 降水变化对红松阔叶林土壤微生物生物量生长季动态的影响. 应用生态学报, 2015, 26(5): 1297-1305 [38] 于洁. 库布齐沙地植被演替与恢复过程中植物-土壤微生物互作研究. 博士论文. 呼和浩特: 内蒙古大学, 2022 [39] 陈俊芳, 吴宪, 杨佳绒, 等. 全球气候变化下干旱及复水对植物和土壤微生物的影响: 进展与展望. 生态学杂志, 2023, 42(12): 3038-3049 [40] 王启兰, 曹广民, 王长庭. 高寒草甸不同植被土壤微生物数量及微生物生物量的特征. 生态学杂志, 2007, 26(7): 1002-1008 [41] Davidson EA, Belk E, Boone RD. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 1998, 4: 217-227 [42] 杨睿哲, 杨世龙, 翁希哲, 等. 水蚀环境植被恢复对土壤有机碳固存和团聚体稳定的影响: Meta分析. 环境科学, 2023, 44(3): 1542-1552 [43] Bardgett RD, Bowman WD, Kaufmann R, et al. A temporal approach to linking aboveground and belowground ecology. Trends in Ecology and Evolution, 2005, 20: 634-641 |