[1] Hessen DO, Elser JJ, Sterner RW, et al. Ecological stoichiometry: An elementary approach using basic principles. Limnology and Oceanography, 2013, 58: 2219-2236 [2] Tjoelker MG, Craine JM, Wedin D, et al. Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytologist, 2005, 167: 493-508 [3] 高德新, 张伟, 任成杰, 等. 黄土高原典型植被恢复过程土壤与叶片生态化学计量特征. 生态学报, 2019, 39(10): 3622-3630 [4] Huang L, Chen RY, Xue W, et al. Effects of scale and contrast of spatial heterogeneity in plant-soil feedbacks on plant growth. Science of the Total Environment, 2023, 878: 163159 [5] Sauze J, Jones SP, Wingate L, et al. The role of soil pH on soil carbonic anhydrase activity. Biogeosciences, 2018, 15: 597-612 [6] 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 2008, 28(8): 3937-3947 [7] 周红艳, 吴琴, 陈明月, 等. 鄱阳湖沙山单叶蔓荆不同器官碳、氮、磷化学计量特征. 植物生态学报, 2017, 41(4): 461-470 [8] 万红云, 陈林, 庞丹波, 等. 贺兰山不同海拔土壤酶活性及其化学计量特征. 应用生态学报, 2021, 32(9): 3045-3052 [9] 许窕孜, 叶彩红, 张耕, 等. 北江中下游不同林分类型土壤C、N、P生态化学计量特征. 应用生态学报, 2023, 34(4): 962-968 [10] 朱德煌, 王金燕, 黄慧婷, 等. 闽楠林土壤-凋落物-叶片碳氮磷生态化学计量对人为干扰的响应. 生态学报, 2023, 43(12): 5050-5059 [11] 郑绍傑, 茶晓飞, 孙丽娟, 等. 不同林龄白枪杆及土壤生态化学计量及非结构性碳特征研究. 核农学报, 2024, 38(2): 364-373 [12] 任悦, 高广磊, 丁国栋, 等. 沙地樟子松人工林叶片-枯落物-土壤氮磷化学计量特征. 应用生态学报, 2019, 30(3): 743-750 [13] 王国华, 王佳琪, 刘婧. 晋西北丘陵风沙区柠条锦鸡儿人工林植被和土壤随林龄变化特征. 应用生态学报, 2024, 35(1): 62-72 [14] Lei JJ, Cao YX, Wang J, et al. Soil nutrients, enzyme activities, and microbial communities along a chronosequence of Chinese fir plantations in subtropical China. Plants, 2023, 12: 1931-1945 [15] Zhang JJ, Li XY, Chen M, et al. Response of plant, litter, and soil C:N:P stoichiometry to growth stages in Quercus secondary forests on the Loess Plateau, China. Journal of Forestry Research, 2023, 34: 595-607 [16] 梁红柱, 刘丽丽, 高会, 等. 太行山东坡中段植物多样性垂直分布格局及其驱动因素. 中国生态农业学报, 2022, 30(7): 1091-1100 [17] 姜沛沛, 曹扬, 陈云明, 等. 不同林龄油松(Pinus tabuliformis)人工林植物、凋落物与土壤C、N、P化学计量特征. 生态学报, 2016, 36(19): 6188-6197 [18] 杨霞, 陈丽华, 郑学良. 不同林龄油松人工林土壤碳、氮和磷生态化学计量特征. 中国水土保持科学, 2021, 19(2): 108-116 [19] 牛存洋, 寿文凯, 杨喜田, 等. 太行山南麓3种典型灌木枝-叶功能性状及其适应策略. 干旱区资源与环境, 2023, 37(12): 123-130 [20] 汪宗飞, 郑粉莉. 黄土高原子午岭地区人工油松林碳氮磷生态化学计量特征. 生态学报, 2018, 38(19): 6870-6880 [21] 王乐, 董雷, 赵志平, 等. 太行山生物多样性保护优先区域京津冀地区植被多样性与植被制图. 中国科学: 生命科学, 2021, 51(3): 289-299 [22] 国家林业局. 主要树种龄级与龄组划分(LY/T 2908—2017). 北京: 中国标准出版社, 2017 [23] Yu YH, Chi YK. Ecological stoichiometric characteristics of soil at different depths in a karst plateau mountain area of China. Polish Journal of Environmental Studies, 2020, 29: 969-878 [24] 杨成德, 龙瑞军, 陈秀蓉, 等. 土壤微生物功能群及其研究进展. 土壤通报, 2008, 52(2): 421-425 [25] Zhou ZC, Shangguan ZP. Vertical distribution of fine roots in relation to soil factors in Pinus tabuliformis Carr. forest of the Loess Plateau of China. Plant and Soil, 2007, 291: 119-129 [26] Palviainen M, Finér L. Decomposition and nutrient release from Norway spruce coarse roots and stumps: A 40-year chronosequence study. Forest Ecology and Mana-gement, 2015, 358: 1-11 [27] 李婷, 邓强, 袁志友, 等. 黄土高原纬度梯度上的植物与土壤碳、氮、磷化学计量学特征. 环境科学, 2015, 36(8): 2988-2996 [28] Tian HQ, Chen GS, Zhang C, et al. Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data. Biogeochemistry, 2010, 98: 139-151 [29] 韩文轩, 吴漪, 汤璐瑛, 等. 北京及周边地区植物叶的碳氮磷元素计量特征. 北京大学学报: 自然科学版, 2009, 45(5): 855-860 [30] Güsewell S. N:P ratios in terrestrial plants: Variation and functional significance. New Phytologist, 2004, 164: 243-266 [31] Elser JJ, Fagan WF, Kerkhoff AJ, et al. Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change. New Phytologist, 2010, 186: 593-608 [32] 田地, 严正兵, 方精云. 植物生态化学计量特征及其主要假说. 植物生态学报, 2021, 45(7): 682-713 [33] 张剑坛, 李艳朋, 张入匀, 等. 基于枝条木材密度分级的鼎湖山南亚热带常绿阔叶林树高曲线模型. 生物多样性, 2021, 29(4): 456-466 [34] 罗雅曦, 刘任涛, 张静, 等. 腾格里沙漠草方格固沙林土壤颗粒组成、分形维数及其对土壤性质的影响. 应用生态学报, 2019, 30(2): 525-535 [35] 徐学华, 张金柱, 张慧, 等. 太行山片麻岩区植被恢复过程中物种多样性与土壤水分效益分析. 水土保持学报, 2007, 21(2): 133-136 [36] Wei XY, Wu FZ, Heděnec P, et al. Changes in soil faunal density and microbial community under altered litter input in forests and grasslands. Fundamental Research, 2022, 2: 954-963 [37] Jiang J, Wang YP, Yang YH, et al. Interactive effects of nitrogen and phosphorus additions on plant growth vary with ecosystem type. Plant and Soil, 2019, 440: 523-537 [38] 李菊梅, 王朝辉, 李生秀. 有机质、全氮和可矿化氮在反映土壤供氮能力方面的意义. 土壤学报, 2003, 40(2): 232-238 [39] 吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望. 植物生态学报, 2014, 38(3): 298-310 |