[1] 侯平, 潘存德. 森林生态系统中的粗死木质残体及其功能. 应用生态学报, 2001, 12(2): 309-314 [2] Pan Y, Birdsey RA, Fang J, et al. A large and persistent carbon sink in the world’s forests. Science, 2011, 333: 988-993 [3] 汤国庆, 吴福忠, 杨万勤, 等. 高山森林林窗和生长基质对苔藓植物氮和磷含量的影响. 应用生态学报, 2018, 29(4): 1133-1139 [4] Bani A, Pioli S, Ventura M, et al. The role of microbial community in the decomposition of leaf litter and deadwood. Applied Soil Ecology, 2018, 126: 75-84 [5] Fauteux D, Imbeau L, Drapeau P, et al. Small mammal responses to coarse woody debris distribution at different spatial scales in managed and unmanaged boreal forests. Forest Ecology and Management, 2012, 266: 194-205 [6] Wang Z, Zhao L, Bai Y, et al. Changes in plant debris and carbon stocks across a subalpine forest successional series. Forest Ecosystems, 2021, 8: 523-536 [7] Spears JDH, Lajtha K. The imprint of coarse woody debris on soil chemistry in the western Oregon Cascades. Biogeochemistry, 2005, 71: 163-175 [8] Zalamea M, González G, Ping CL, et al. Soil organic matter dynamics under decaying wood in a subtropical wet forest: Effect of tree species and decay stage. Plant and Soil, 2007, 296: 173-185 [9] 游惠明, 何东进, 蔡昌棠, 等. 天宝岩长苞铁杉林倒木对土壤肥力质量的影响评价. 应用与环境生物学报, 2013, 19(1): 168-174 [10] 王振宇, 王涛, 邹秉章, 等. 不同生长阶段杉木人工林土壤C∶N∶P化学计量特征与养分动态. 应用生态学报, 2020, 31(11): 3597-3604 [11] 陶冶, 张元明, 周晓兵. 伊犁野果林浅层土壤养分生态化学计量特征及其影响因素. 应用生态学报, 2016, 27(7): 2239-2248 [12] Berg B, McClaugherty C. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. Berlin: Springer, 2014: 1-187 [13] Hafner SD, Groffman PM, Mitchell MJ. Leaching of dissolved organic carbon, dissolved organic nitrogen, and other solutes from coarse woody debris and litter in a mixed forest in New York State. Biogeochemistry, 2005, 74: 257-282 [14] Stutz KP, Dann D, Wambsganss J, et al. Phenolic matter from deadwood can impact forest soil properties. Geoderma, 2017, 288: 204-212 [15] 游惠明, 何东进, 刘进山, 等. 倒木覆盖对天宝岩国家级自然保护区长苞铁杉林内土壤理化特性的影响. 植物资源与环境学报, 2013, 22(3): 18-24 [16] Minnich C, Perzšoh D, Poll C, et al. Changes in chemical and microbial soil parameters following 8 years of deadwood decay: An experiment with logs of 13 tree species in 30 forests. Ecosystems, 2021, 24: 955-967 [17] Spears JDH, Holub SM, Harmon ME, et al. The influence of decomposing logs on soil biology and nutrient cycling in an old-growth mixed coniferous forest in Oregon, USA. Canadian Journal of Forest Research, 2003, 33: 2193-2201 [18] Zalamea M, González G, Lodge DJ. Physical, chemical, and biological properties of soil under decaying wood in a tropical wet forest in Puerto Rico. Forests, 2016, 7: 168 [19] Moghimian N, Jalali SG, Kooch Y, et al. Downed logs improve soil properties in old-growth temperate forests of northern Iran. Pedosphere, 2020, 30: 378-389 [20] Błońska E, Kacprzyk M, Spólnik A. Effect of deadwood of different tree species in various stages of decomposition on biochemical soil properties and carbon storage. Ecological Research, 2017, 32: 193-203 [21] Wojciech P, Ewa B, Jarosław L, et al. A comparison of C:N:P stoichiometry in soil and deadwood at an advanced decomposition stage. Catena, 2019, 179: 1-5 [22] 张瑜. 腐烂等级、径级对红松倒木物理化学性质及其分解速率的影响. 硕士论文. 哈尔滨: 东北林业大学, 2017 [23] 常晨晖, 朱彪, 朱江玲, 等. 森林粗木质残体分解研究进展. 植物生态学报, 2024, 48(5): 541-560 [24] 杨万勤, 吴福忠. 长江上游亚高山针叶林生态系统过程与管理. 北京: 科学出版社, 2021: 28-59 [25] Yang W, Wang K, Kellomáki S, et al. Litter dynamics of three subalpine forests in Western Sichuan. Pedosphere, 2005, 15: 653-659 [26] 肖洒. 川西高山森林粗木质残体储量与分解特征. 硕士论文. 四川雅安: 四川农业大学, 2015 [27] Wang Z, Wang Q, Tan B, et al. Characteristics and intrinsic influencing factors of log humification depend on wood traits in a subalpine forest. Catena, 2023, 221: 106788 [28] Wang Q, Penuelas J, Tan B, et al. The role of decaying logs in nursing soil fungal diversity varies with decay classes in the forest ecosystem. European Journal of Soil Science, 2022, 73: e13243 [29] Rouvinen S, Kuuluvainen T, Karjalainen L. Coarse woody debris in old Pinus sylvestris dominated forests along a geographic and human impact gradient in boreal Fennoscandia. Canadian Journal of Forest Research, 2002, 32: 2184-2200 [30] 谭波. 森林土壤实验常规分析方法. 成都: 四川大学出版社, 2019: 63-126 [31] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000: 39-268 [32] 杨阳, 王宝荣, 窦艳星, 等. 植物源和微生物源土壤有机碳转化与稳定研究进展. 应用生态学报, 2024, 35(1): 111-123 [33] 何东进, 游惠明, 肖石红, 等. 天宝岩长苞铁杉林倒木接触处土壤酶活性变化及其环境效应. 生态学报, 2017, 37(1): 118-126 [34] Liang C, Schimel JP, Jastrow JD. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2017, 2: 17105 [35] 李丹维, 王紫泉, 田海霞, 等. 太白山不同海拔土壤碳、氮、磷含量及生态化学计量特征. 土壤学报, 2017, 54(1): 160-170 [36] Harmon ME, Sexton J, Caldwell BA, et al. Fungal sporocarp mediated losses of Ca, Fe, K, Mg, Mn, N, P, and Zn from conifer logs in the early stages of decomposition. Canadian Journal of Forest Research, 1994, 24: 1883-1893 [37] Laiho R, Prescott CE. Decay and nutrient dynamics of coarse woody debris in northern coniferous forests: A synthesis. Canadian Journal of Forest Research, 2004, 34: 763-777 [38] 汪沁. 倒木对土壤微生物群落特征的影响. 博士论文. 四川雅安: 四川农业大学, 2022 [39] Kuehne C, Donath C, Muller-Using SI, et al. Nutrient fluxes via leaching from coarse woody debris in a Fagus sylvatica forest in the Solling Mountains, Germany. Canadian Journal of Forest Research, 2008, 38: 2405-2413 [40] Erickson HE, Edmonds RL, Petersen CE. Decomposition of logging residues in Douglas-fir, western hemlock, Pacific silver fir, and ponderosa pine ecosystems. Canadian Journal of Forest Research, 1985, 15: 914-921 [41] Gusewell S, Koerselman W, Verhoeven JTA. Biomass N:P ratios as indicators of nutrient limitation for plant populations in wetlands. Ecological Applications, 2003, 13: 372-384 |