[1] 刘斯媛, 罗勇, 于慧, 等. 川西北长江黄河源区生态安全格局构建及优化. 环境工程技术学报, 2023, 13(4): 1315-1324 [2] 王卫霞, 刘晓菊, 刘景, 等. 中度火干扰对喀纳斯泰加林土壤理化性质的影响. 西南农业学报, 2018, 31(6): 1216-1220 [3] 孔健健, 张亨宇, 荆爽. 大兴安岭火后演替初期森林土壤磷的动态变化特征. 生态学杂志, 2017, 36(6): 1515-1523 [4] 周磊, 孙宗玖, 聂婷婷, 等. 凋落物添加对蒿类荒漠草地土壤碳氮磷含量及其化学计量特征的影响. 草 地学报, 2024, 32(2): 462-469 [5] 刘平, 杨章旗, 颜培栋, 等. 马尾松林下植被和凋落物的碳氮磷化学计量特征. 森林与环境学报, 2023, 43(5): 473-480 [6] Bradford MA, Veen GF, Bonis A. A test of the hierarchical model of litter decomposition. Nature Ecology & Evolution, 2017, 12: 1836-1845 [7] 李勋, 崔宁洁, 张艳, 等. 马尾松与乡土阔叶树种凋落叶纤维素、总酚以及缩合单宁降解的混合效应. 生态环境学报, 2022, 31(9): 1813-1822 [8] Hattenschwiler S. The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends in Ecology & Evolution, 2000, 15: 238-243 [9] Cotrufo MF, Soong JL, Horton AJ, et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, 2015, 8: 776-779 [10] 郭晓伟, 张雨雪, 尤业明, 等. 凋落物输入对森林土壤有机碳转化与稳定性影响的研究进展. 应用生态学报, 2024, 35(9): 2352-2361 [11] 黄子容, 李丽莎, 杨钙仁, 等. 遮光水环境中4种南方植物凋落叶分解特性. 应用生态学报, 2025, 36(3): 755-761 [12] Yue K, Peng CH, Yang WQ, et al. Degradation of lignin and cellulose during foliar litter decomposition in an alpine forest river. Ecosphere, 2016, 7: 15-23 [13] 张艳, 张丹桔, 李勋, 等. 马尾松人工林林窗边缘效应对樟和红椿凋落叶难降解物质分解的影响. 应用生态学报, 2016, 27(4): 1116-1124 [14] 王毅焕, 靳一丹, 姜铭楷, 等. 短期氮沉降改变毛竹林凋落物和土壤有机质化学组成. 应用生态学报, 2023, 34(10): 2593-2600 [15] 陈甜, 元方慧, 张琳梅, 等. 不同化学性质叶凋落物添加对土壤有机碳矿化及激发效应的影响. 应用生态学报, 2022, 33(10): 2602-2610 [16] Liu J, Liu XY, Song QN, et al. Synergistic effects: A common theme in mixed-species litter decomposition. New Phytologist, 2020, 227: 757-765 [17] Wang WB, Chen DS, Zhang Q, et al. Effects of mixed coniferous and broad-leaved litter on bacterial and fungal nitrogen metabolism pathway during litter decomposition. Plant and Soil, 2020, 451: 307-323 [18] 袁亚玲, 张丹桔, 张艳, 等. 马尾松与阔叶树种凋落叶混合分解初期的酶活性. 应用与环境生物学报, 2018, 24(3): 508-517 [19] 张晓曦, 刘凯旋, 车文绒, 等. 针阔叶凋落物混合分解对酚类物质释放的非加和性影响. 生态学杂志, 2023, 42(12): 2885-2894 [20] 吴傲淼, 洪宗文, 游成铭, 等. 华西雨屏区不同林龄柳杉人工林土壤团聚体碳氮磷化学计量特征. 应用生态学报, 2024, 35(9): 2518-2526 [21] 蓝丽英, 杨万勤, 吴福忠, 等. 川西亚高山森林土壤动物对杨树和箭竹凋落物分解过程中微生物群落的影响. 应用生态学报, 2019, 30(9): 2983-2991 [22] 张远东, 刘彦春, 顾峰雪, 等. 川西亚高山五种主要森林类型凋落物组成及动态. 生态学报, 2019, 39(2): 502-508 [23] Soest PV, Wine R. Determination of lignin and cellulose in acid-detergent fiber with permanganate. Journal of AOAC International, 1968, 51: 780-785 [24] Vivas N, Nonier MF, Gaulejac NVD, et al. Differentiation of proanthocyanidin tannins from seeds, skins and stems of grapes (Vitis vinifera) and heartwood of Quebracho (Schinopsis balansae) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and thioacidolysis/liqu chromatography/electrospray ionization mass spectrometry. Analytica Chimica Acta, 2003, 513: 247-256 [25] 谢金娟. 马尾松与不同阔叶树种凋落物混合分解特征及其对土壤养分的影响. 硕士论文. 长沙: 中南林业科技大学, 2024 [26] Gill AL, Adler PB, Borer ET, et al. Nitrogen increases early-stage and slows late-stage decomposition across diverse grasslands. Journal of Ecology, 2022, 110: 1376-1389 [27] Wu PP, Jiang LX, Zhang Y, et al. Manganese addition accelerates litter decomposition and alters litter mixing effects in the late stage in subtropical plantations of southern China. Plant and Soil, 2022, 481: 501-510 [28] 黄子容, 李丽莎, 杨钙仁, 等. 遮光水环境中4种南方植物凋落叶分解特性. 应用生态学报, 2025, 36(3): 755-761 [29] 李勋, 刘洋, 张艳, 等. 马尾松人工林林窗内土壤动物作用下凋落叶C元素的动态变化. 植物研究, 2016, 36(2): 195-203 [30] 王春辉, 满秀玲, 李海兴. 大兴安岭火烧迹地天然次生林土壤微生物生物量及酶活性特征研究. 森林工程, 2024, 40(4): 88-97 [31] 兰越, 王云琦, 王玉杰, 等. 林火对重庆缙云山典型林分土壤细菌群落及酶活性的短期影响. 中国水土保持科学, 2023, 21(3): 60-68 [32] 刘莎茜, 杨瑞, 侯春兰, 等. 贵州山区生态茶园不同凋落物木质素、纤维素分解特征. 茶叶科学, 2021, 41(5): 654-668 [33] Berg B, Johansson M, Meentemeyer V. Litter decomposition in a transect of Norway spruce forests: Substrate quality and climate control. Canadian Journal of Forest Research, 2000, 30: 1136-1147 [34] Fioretto A, Nardo CD, Papa S, et al. Lignin and cellulose degradation and nitrogen dynamics during decomposition of three leaf litter species in a Mediterranean ecosystem. Soil Biology & Biochemistry, 2005, 37: 1083-1091 [35] 李勋, 张艳, 宋思梦, 等. 针阔凋落叶混合分解过程中可溶性有机碳释放的动态特征. 广西植物, 2023, 44(7): 1205-1217 [36] 王海霞, 解婷婷, 米雪, 等. 干旱荒漠区三种典型灌丛植物凋落物混合分解效应研究. 草地学报, 2024, 32(3): 869-878 [37] 王淳, 董雪婷, 杜瑞鹏, 等. 华北落叶松与阔叶树种混合凋落叶分解过程中养分释放和酶活性变化. 应用生态学报, 2021, 32(5): 1709-1716 [38] 李宜浓, 周晓梅, 张乃莉, 等. 陆地生态系统混合凋落物分解研究进展. 生态学报, 2016, 36(16): 4977-4987 [39] 李远华. β-葡萄糖苷酶的研究进展. 安徽农业大学学报, 2002, 29(4): 421-425 [40] Brown ME, Chang MC. Exploring bacterial lignin degradation. Current Opinion in Chemical Biology, 2014, 19: 1-7 [41] Lin YM, Liu JW, Xiang P, et al. Tannin dynamics of propagules and leaves of Kandelia candel and Bruguiera gymnorrhiza in the Jiulong River Estuary, Fujian, China. Biogeochemistry, 2006, 78: 343-359 [42] 胡爱华, 邢世岩, 巩其亮, 等. 基于FTIR的针阔叶材木质素和纤维素特性. 东北林业大学学报, 2009, 37(9): 79-81 [43] You TT, Mao JZ, Yuan TQ, et al. Structural elucidation of the lignins from stems and foliage of Arundo donax Linn. Journal of Agricultural and Food Chemistry, 2013, 61: 5361-5370 [44] Liao ZY, Nobis PM, Xiong QL, et al. Potential distributions of seven sympatric sclerophyllous oak species in Southwest China depend on climatic, non-climatic, and independent spatial drivers. Annals of Forest Science, 2021, 78: 5 [45] Andrews RE, Parks LW, Spence KD. Some effects of Douglas fir terpenes on certain microorganisms. Applied and Environmental Microbiology, 1980, 40: 301-304 [46] 王意锟, 方升佐, 曲宏辉, 等. 森林凋落物分解的影响因素. 林业科技开发, 2012, 26(1): 5-9 |