Chinese Journal of Applied Ecology ›› 2002, Vol. ›› Issue (11): 1478-1482.
Previous Articles Next Articles
SUN Caixia, CHEN Lijun and WU Zhijie
Received:
2002-01-23
Revised:
2002-04-17
CLC Number:
SUN Caixia, CHEN Lijun and WU Zhijie . [J]. Chinese Journal of Applied Ecology, 2002, (11): 1478-1482.
[1] Addison JA.1993.Persistence and non-target effects of Bacillus thuringiensis in soil:A review.Can J For Res,23:2329~2343 [2] Alstad DN,Andow DA.1995.Managing the evolution of insect resistance to transgenic plants.Science,268:1894~1896 [3] Aronson AI,Beckman W,Dunn P.1986.Bacillus thuringiensis and related insect pathogens.Microbiol Rev,50:1~24 [4] Barton KA,Whiteley HR,Yang NS.1987.Bacillus thuringiensis δ-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects.Plant Physiol,85:1103~1109 [5] Bietlot H,Carey PR,Choma C,et al.1989.Facile preparation and characterization of the toxin from Bacillus thuringiensis var.kurstaki.Biochem J,260:81~97 [6] Crecchio C,Stotzky G.1998.Insecticidal activity and biodegradation of the toxin from Bacillus thuringiensis subsp.kurstaki bound to humic acids from soil.Soil Biol Biochem,30(4):463~470 [7] Crecchio C,Stotzky G.2001.Biodegradation and insecticidal activity of the toxin from Bacillus thuringiensis subsp.kurstaki bound to complexes of montmorillonite-humic acids-Al hydroxypolymers.Soil Biol Biochem,33:573~581 [8] Cummings CE,Armstrong G,Hodgman TC,et al.1994.Structural and functional studies of a synthetic peptide mimicking a proposed membrane inserting region of a Bacillus thuringiensis δ-endotoxin.Mol Memb Biol,11:87~92 [9] Dick WA,Tabatabai AM.1993.Significance and potential uses of soil enzymes.Soil Microbiol Ecol,2:95~127 [10] Donegan KK,Palm CJ,Fieland VJ,et al.1995.Changes in levels,species,and DNA fingerprints of soil microorganisms associated with cotton expressing Bacillus thuringiensis var.kurstaki the endoxin.Appl Soil Ecol,2:11~124 [11] Fearing PL,Brown D,Vlachos D,et al.1997.Toxins expressing in transgenic Bt corn pollen.Mol Breed,3:169~176 [12] Ferre J,Escriche B,Bel Y,et al.1995.Biochemistry and genetics of insect resistance to Bacillus thuringiensis insecticidal crystal protein.FEMS Microbiol Let,132:1~7 [13] Fischhoff DA,Bowdisch KS,Perlak FJ,et al.1978.Insect tolerant transgenic tomato plants.Biol Technol,5:807~813 [14] Flexner JL,Lighthart B,Croft BA.1986.The effects of microbial pesticides on nontarget,beneficial arthropods.Agric Ecosyst Environ,16:203~254 [15] Fusi P,Ristori G,Calamai L,et al.1989.Adsorption and binding of protein on "clean"(homoionic) and "dirty"(coated with Fe hydroxides) montmorillonite,illite and kaolinite.Soil Biol Biochem,21:911~920 [16] Gibbons A.1991.Moths take the field against biopesticide.Science,254:646 [17] Goldburg RJ,Tjaden H.1990.Are Bacillws thuringiensis var.kurstaki plant really safe to eat?Biol Technol,8:1011~1015 [18] Griego VM,Spence KD.1978.Inactivation of Bacillus thuringiensis spores by ultraviolet and visible light.Appl Environ Microbiol,35:906~910 [19] Heckel DG.1994.The complex genetic basis of resistance to Bacillus thuringiensis toxin in insects.Biocontr Sci Technol,4:405~417 [20] Hilbeck A,Baumgartner M,Fried PM,et al.1998.Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperla carnea.Environ Entomol,27:480~470 [21] Hofte H,Whiteley HR.1989.Insecticidal crystal proteins of Bacillus thuringiensis.Microbiol Rev,53:241~255 [22] Jia S-R(贾士荣),Guo S-D(郭三堆),An D-C(安道昌) eds.2001.Transgenic Cotton.Beijing:Science Press.(in Chinese) [23] Johnson KS,Scriber JM,Nitas JK,et al.1995.Toxicity of Bacillus thuringiensis var.kurstaki to three nontarget lepidopteran in field studies.Environ Entomol,24:288~297 [24] Kaiser J.1996.Pests overwhelm Bt cotton.Crop Sci,14:10~70 [25] Koskella J,Stotzky G.1997.Microbial utilization of free and clay-bound insecticidal toxins from and their retention of insecticidal activity after incubation with microbes.Appl Environ Microbiol,63:3561~3568 [26] Koziel MG,Carozzi NB,Currier TC,et al.1993.The insecticidal crystal protein of Bacillus thuringiensis:Past,present and future uses.Biotechnol Genet Engin Rev,11:171~178 [27] Liu Q(刘谦),Zhu X-Q(朱鑫泉) eds.2001.Biosafty.Beijin:Science Press.(in Chinese) [28] Losey GE,Raynor LS,Cater ME.1999.Transgenic pollen harms monarch larvae.Nature,399:214 [29] McGaughey WH,Whalon ME.1992.Managing insect resistance to Bacillus thuringiensis toxin.Science,258:1451~1455 [30] Palm CJ,Donegan KK,Harris DL,et al.1994.Quantitation in soil of Bacillus thuringiensis var.kurstaki delta-endotoxin from transgenic plants.Mol Ecol,3:145~151 [31] Palm CJ,Schaller DL,Donegan KK,et al.1996.Persistence in soil of transgenic plant produced Bacillus thuringiensis var.kurstaki δ-endotoxin.Can J Microbiol,42:1258~1262 [32] Perlak FJ,Deaton RW,Armstrong TA,et al.1990.Insect resistant cotton plants.Biol Technol,8:939~942 [33] Petras SF,Casida LE.1985.Survival of Bacillus thuringiensis spores in soil.Appl Environ Microbiol,50:1496~1501 [34] Saxena D,Flores S,Stotzky G.1999.Insecticidal toxin in root exudates from Bt corn.Nature,402:480 [35] Saxena D,Stotzky G.2000.Insecticidal toxin from Bacillus thuringiensis is released from roots of transgenic Bt corn in vitro and in situ.FEMS Microbiol Ecol,33:35~39 [36] Saxena D,Stotzky G.2001.Bacillus thuringiensis toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms,nematodes,protozoa,bacteria,and fungi in soil.Soil Biol Biochem,33:1225~1230 [37] Sims SR,Holden LR.1996.Insect bioassay for determining soil degradation of Bacillus thuringiensis var.kurstaki CryIA (b) protein in corn tissues.Environ Entomol,25:659~664 [38] Sims SR,Ream JE.1997.Soil inactivation of the insecticidal protein within transgenic cotton tissue:Laboratory microcosms and field studies.J Agric Food Chem,45:1502~1505 [39] Stahly DP,Dingman DW,Bulla LA,et al.1978.Possible origin and function of the parasporal crystals in Bacillus thuringiensis.Biochem Biophys Res Commun,84:581~588 [40] Steven RS,Berberich SA.1996.CryIA protein levels in raw and processed seed of transgenic cotton:Determination using insect bioassay and ELISA.Econ Entomol,89:247~251 [41] Stevenson FJ ed.1982.Humus Chemistry:Genesis,Composition,Reactants.New York:Wiley. [42] Stotzky G.1986.Influence of soil mineral colloids on metabolic processes,growth,adhesion,and ecology of microbes and viruses.In:Huang PM,Schnitzer M eds.Interactions of Soil Minerals with Natural Organics and Microbes.Madison WI:Soil Science Society America.305~428 [43] Stotzky G.2000.Persistence and biological activity in soil of insecticidal proteins from and of bacterial DNA bound on clays and humic acids.J Econ Entomol,29:691~705 [44] Tapp H,Calamail,Stotzky G.1994.Adsorption and binding of the insecticidal proteins form Bacillus thuringiensis subsp.kurstaki and subsp.Tenebrionis on clay.Soil Biol Biochem,26:663~679 [45] Tapp H,Stotzky G.1995.Dot blot enzyme-linked immumosorbent assay for monitoring the fate of insecticidal toxins from Bacillus thuringiensis in soil.Appl Environ Microbiol,61:602~609 [46] Tapp H,Stotzky G.1995.Insecticidal activity of the toxins from Bacillus thuringiensis subsp.kurstaki and tenebrionis adsorbed and bound on pure and soil clays.Appl Environ Microbiol,61:1786~1790 [47] Tapp H,Stotzky G.1997.Monitoring of insecticidal toxins from Bacillus thuringiensis in soil by flow cytometry.Can J Microbiol,43:1074~1078 [48] Tapp H,Stotzky G.1998.Persistance of the insecticidal toxin from Bacillus thuringiensis subsp.kurstaki in soil.Soil Biol Biochem,30:471~476 [49] Vaeck M,Reynanerts A,Hofte H,et al.1987.Trangenic plants protected from insect attack.Nature,328:33~37 [50] Van Rie J,McGaughey WH,Jonhson DE,et al.1990.Mechanism of insect resistance to the microbial insecticide of Bacillus thuringiensis. Science,247:72~74 [51] Venkateswerlu G,Stotzky G.1992.Banding of the protoxin and toxin proteins from Bacillus thuringiensis subsp.kurstaki on clay minerals.Current Microbiol,25:1~9 [52] Wang B-M(王保民),He Z-P(何钟佩),Zhao J-X(赵继勋).Enzyme-linked immunosorbent assay (ELISA) of Bacillus thuringiensis insect control protein as expressed in transgenic cotton.Acta Gosypii Sin(棉花学报),10(4):220~221(in Chinese) [53] Wang W-J(王文军),Qian C-F(钱传范),Shen J-Z(申继忠),et al.2001.The inactiviation of Bacillus thuringiensis parasporal crystals by ultraviolet action in humic acids.Acta Phytophyl Sin(植物保护学报),28(1):49~54(in Chinese) [54] West AW,Burges HD,Wyborn CH.1984.Persistence of Bacillus thuringiensis parasporal crystal insecticidal activity in soil.J Invertebr Pathol,44:128~133 [55] West AW,Burges HD,Dixon TJ,et al.1985.Survival of Bacillus thuringiensis and Bacillus cereus spore inocula in soil:Effect of pH,moisture,nutrient availability and indigenous microorganisms.Soil Biol Biochem,17:657~666 [56] Wilson FD,Flint HM,Deaton WR,et al.1994.Yield components and fiber properties of insect resistant cotton lines containing a Bacillus thuringiensis toxin gene.Crop Sci,34:38~41 [57] Wu G(吴刚),Cui H-R(崔海瑞),Shu Q-R(舒庆荛),et al.2001.Expression patterns of Cry1Ab gene in progenies of "Kemingdao" and the resistance to striped stem borer.Sci Agric Sin(中国农业科学),34(5):496~501(in Chinese) [58] Xie X-B(谢小波),Shu Q-R(舒庆荛).2001.Studies on rapid quantitative analysis of Bt toxin by using envirologix kits in transgenic rice.Sci Agric Sin(中国农业科学),34(5):465~468 (in Chinese) [59] Zambryske P,et al.1983.Tiplasmid vector for the introduction of DNA into plant cells without alteration of their normal regulation capacity.EMBO,2:21~43 [60] Zhang Y-J(张永军),Wu K-M(吴孔明),Guo Y-Y(郭予元).2001.On the spatio-temporal expression of the contents of Bt insecticidal protein and the resistance of Bt transgenic cotton to cotton bollworm.Acta Phytophyl Sin(植物保护学报),28(1):1~6(in Chinese) |
[1] | YIN Biran, XIANG Yongqi, LYU Qian, ZHANG Yan, CHEN Yuqin, CHEN Gang, LAI Jiaming, LI Xianwei. Effects of target tree management on understory regeneration in Pinus massoniana plantations [J]. Chinese Journal of Applied Ecology, 2023, 34(8): 2047-2054. |
[2] | LI Fengrui, ZHAO Wenchao, ZHANG Donglou, DONG Lingyan, WANG Ruming, QI Hongxin, ZHANG Chao, ZHANG Guijun, YANG Xiufeng, SHI Jialiang. Density and row spacing of short-season cotton suitable for machine picking in the cotton region of Yellow River Basin [J]. Chinese Journal of Applied Ecology, 2023, 34(4): 1002-1008. |
[3] | CAO Yu-juan, SONG Zhen-hua, WU Zhi-tao, DU Zi-qiang. Spatio-temporal dynamics of gross primary productivity in China from 1982 to 2017 based on different datasets [J]. Chinese Journal of Applied Ecology, 2022, 33(10): 2644-2652. |
[4] | KANG Hu-hu, LIU Xiao-hong, ZHANG Xin-yu, GUO Jun-ming, WU Guo-ju, XU Guo-bao, KANG Shi-chang. Mercury in tree rings: Advances, problems and prospects [J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3733-3742. |
[5] | ZHENG Chao, GUO Zhi-xing, YUAN Yu-zhi, GUO Ying, CHAI Min, LIANG Xue-ying, BI Ru-tian. Spatial and temporal changes of farmland soil acidification and their influencing factors in different regions of Guangdong Province, China [J]. Chinese Journal of Applied Ecology, 2019, 30(2): 593-601. |
[6] | WANG Xiu-yuan, MA Hui, GAO Hong-yun, LI Nan-nan, LI Jun-hong, XIA Jun, LUO Hong-hai. Responses of cotton canopy structure characteristics to drip irrigation quota in north Xinjiang, China [J]. Chinese Journal of Applied Ecology, 2019, 30(12): 4169-4176. |
[7] | DUAN Jia-rui, ZHANG Quan-xi, BAI Jia-ye, GUO Dong-gang. Community characteristics and canopy structure of pine-oak forest at the Lingkong Mountain in Shanxi, China [J]. Chinese Journal of Applied Ecology, 2019, 30(1): 49-57. |
[8] | SUN Wen-tai, NIU Jun-qiang, DONG Tie, LIU Xing-lu, YIN Xiao-ning, MA Ming. Effect of thinning and reshaping on the canopy structure and leaf quality at late growth stage in dense apple orchard in Loess Plateau of eastern Gansu, China. [J]. Chinese Journal of Applied Ecology, 2018, 29(9): 3008-3016. |
[9] | LI Li-yuan, LI Jun, TONG Xiao-juan, MENG Ping, ZHANG Jin-song, ZHANG Jing-ru. Simulation on photosynthetic light-responses of leaves of Quercus variabilis and Robinia pseudoacacia under different light conditions. [J]. Chinese Journal of Applied Ecology, 2018, 29(7): 2295-2306. |
[10] | HUANG Hui-min, DONG Rong, HE Dan-ni, XIANG Yun-rong, ZHANG Xiao-jing, CHEN Juan, TAO Jian-ping. Effects of temporal and spatial variation of canopy structures and light conditions on population characteristics of Fargesia decurvata. [J]. Chinese Journal of Applied Ecology, 2018, 29(7): 2129-2138. |
[11] | ZHANG Gong, ZHENG Ning, ZHANG Jin-song, MENG Ping. Turbulence micro-meteorological characteristics over the plantation canopy. [J]. Chinese Journal of Applied Ecology, 2018, 29(6): 1787-1796. |
[12] | ZHANG Dai-jing, ZHANG Yan-yan, WANG Yan-jie, CHEN Qian-qing, YANG Hui-li, MA Jian-hui, LI Chun-xi. Structure characteristics of soil and canopy and their relationships in wheat field under different tillage and application of organic fertilizer. [J]. Chinese Journal of Applied Ecology, 2018, 29(2): 538-546. |
[13] | MA Qi-yun, ZHANG Ji-quan, LAI Quan, ZHANG Feng, DONG Zhen-hua, A Lu-si. Temporal and spatial variations of extreme climatic events in Songnen Grassland, Northeast China during 1960-2014 [J]. Chinese Journal of Applied Ecology, 2017, 28(6): 1769-1778. |
[14] | XIE Jun-fei, GUO Jia. Spatial-temporal variation of fraction of absorbed photosynthetically active radiation (FPAR) in Beijing during 2010-2012. [J]. Chinese Journal of Applied Ecology, 2016, 27(4): 1203-1210. |
[15] | LI Xiao-peng, WANG Shu, HUANG Yuan-cai, JIA Bao-yan, WANG Yan, ZENG Qun-yun. Effects of spacing on the yields and canopy structure of japonica rice at full heading stage. [J]. Chinese Journal of Applied Ecology, 2015, 26(11): 3329-3336. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||