[1] Achnich C, Schuhmann A, Wind T, et al. 1995. Role of interspecies H2 transfer to sulfate and ferric iron-reducing bacteria in acetate consumption in anoxic paddy soil. FEMS Microbial Ecol, 16: 61~69 [2] Achtnich C, Bak F, Conrad R. 1995. Competition for electron donors among nitratre reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biol Fertil Soils, 19: 65~72 [3] Chidthaisong A, Conrad R. 2000.Turnover of glucose and acetatecoupled to reduction of nitrate, ferric iron and sulfate and to methanogenesis in anoxic rice field soil. FEMS Microbiol Ecol, 31 (1): 73~86 [4] Conrad R. 1988. Biogeochemistry and ecophysiology of atmospheric CO and H2. Adv Microbiol Ecol, 10:231~238 [5] Conrad R. 1996. Anaerobic hydrogen metabolism in aquatic sediments. Mitt Int Ver Limnol, 25:15~24 [6] Conrad R. 1996. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev, 60(4): 609~40 [7] Conrad R. 1999. Contribution of hydrogen to methane production and control of hydrogen concentrationa in methanogenic soil and sediments. FEMS Microbiol Ecol, 28: 193~202 [8] Dolfing, J. 1988. Acetogenesis. In Zehnder AJB ed. Biology of Anaerobic Microorganisms. New York:John Wiley and Sons. Inc.417~468 [9] Phelps TJ, Conrad R, Zeikus JG. 1985. Sulfate dependent interspecies H2 transfer between Methanosarcina barkeri and Desulfovibrio vulgaris during the co-culture metabolism of acetate or methanol. Appl Environ Microbiol, 50: 589~594 [10] Schink B. 1992. Syntrophism among prokaryotes. In: Balows A, Trueper HG, Dworkin Meds. New York: Spring-Verlag. 276~299 [11] Schwertmann U, Cornll, RM. 1991. Iron Oxides in the Laboratory-Prepartion and Characterization. VCH.Weinheim.69~144 [12] Stams AJM. 1994. Metabolic interactions between ananaerobic bacteria in methanogenic environments. Antonie Leeuwenhoek, 66: 271~294 [13] Widdel F, Schnell S, Ehrenreich A, et al. 1993. Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature, 362:834~835 |