应用生态学报 ›› 2021, Vol. 32 ›› Issue (3): 1119-1128.doi: 10.13287/j.1001-9332.202103.032
边琦1,2, 王成1,2*, 郝泽周1,2
收稿日期:
2020-06-22
接受日期:
2020-11-14
出版日期:
2021-03-15
发布日期:
2021-09-15
通讯作者:
* E-mail: wch8361@163.com
作者简介:
边琦, 女, 1995年生, 博士研究生。主要从事城市森林结构与功能、城市森林声景观的研究。E-mail: bqibian@163.com
基金资助:
BIAN Qi1,2, WANG Cheng1,2*, HAO Ze-zhou1,2
Received:
2020-06-22
Accepted:
2020-11-14
Online:
2021-03-15
Published:
2021-09-15
Contact:
* E-mail: wch8361@163.com
Supported by:
摘要: 声音是生物之间交流的重要手段,对生物声音的监测与分析是描述和评估生物多样性的新兴方法。这种方法不侵入和破坏自然环境,通过声音记录生态信息,并有效反映生物多样性的相关特征,是一种重要的生态工具。从声音角度探讨生物多样性的变化拓宽了多学科交叉的新思路,因此近年来被越来越多地应用于生态学研究中。本文阐述了利用声音监测评估生物多样性的主要理论基础和研究方法,从发声动物的生物多样性、声景的时空多样性两个方面介绍了相关领域的研究进展,列举了声音监测在评估土地利用变化、气候变化和城市化对生物多样性影响的应用实例。最后,对未来研究方向进行了展望,希望能进一步挖掘声音调查的发展潜力,为生物多样性的监测评估提供有效的借鉴和参考。
边琦, 王成, 郝泽周. 生物声音监测研究在生物多样性领域的应用[J]. 应用生态学报, 2021, 32(3): 1119-1128.
BIAN Qi, WANG Cheng, HAO Ze-zhou. Application of ecoacoustic monitoring in the field of biodiversity science[J]. Chinese Journal of Applied Ecology, 2021, 32(3): 1119-1128.
[1] | Pimm SL, Alibhai S, Bergl R, et al. Emerging techno-logies to conserve biodiversity. Trends in Ecology & Evolution, 2015, 30: 685-696 |
[2] | Schmeller DS, Böhm M, Arvanitidis C, et al. Building capacity in biodiversity monitoring at the global scale. Biodiversity and Conservation, 2017, 26: 2765-2790 |
[3] | Sueur J, Krause B, Farina A. Climate change is breaking earth’s beat. Trends in Ecology & Evolution, 2019, 34: 971-973 |
[4] | Tobias JA, Planque R, Cram DL, et al. Species interactions and the structure of complex communication networks. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111: 1020-1025 |
[5] | Xie J, Hu K, Zhu M, et al. Data-driven analysis of global research trends in bioacoustics and ecoacoustics from 1991 to 2018. Ecological Informatics, 2020, 57:101068 |
[6] | Pijanowski BC, Villanueva-Rivera LJ, Dumyahn SL, et al. Soundscape ecology: The science of sound in the landscape. Bioscience, 2011, 61: 203-216 |
[7] | Krause B. Bioacoustics, habitat ambience in ecological balance. Whole Earth Review, 1987, 57: 14-18 |
[8] | Pijanowski BC, Farina A, Gage SH, et al. What is soundscape ecology? An introduction and overview of an emerging new science. Landscape Ecology, 2011, 26: 1213-1232 |
[9] | Sueur J, Farina A. Ecoacoustics: The ecological investigation and interpretation of environmental sound. Biosemiotics, 2015, 8: 493-502 |
[10] | Wilkins MR, Seddon N, Safran RJ. Evolutionary divergence in acoustic signals: Causes and consequences. Trends in Ecology & Evolution, 2013, 28: 156-166 |
[11] | Buxton RT, McKenna MF, Clapp M, et al. Efficacy of extracting indices from large-scale acoustic recordings to monitor biodiversity. Conservation Biology, 2018, 32: 1174-1184 |
[12] | Krause B. The Great Animal Orchestra: Finding the Origins of Music in the World’s Wild Places. Hachette Audio, France: Little Brown, 2012: 227 |
[13] | Kasten EP, Gage SH, Fox J, et al. The remote environmental assessment laboratory’s acoustic library: An archive for studying soundscape ecology. Ecological Informatics, 2012, 12: 50-67 |
[14] | Hart PJ, Hall R, Ray W, et al. Cicadas impact bird communication in a noisy tropical rainforest. Behavioral Ecology, 2015, 26: 839-842 |
[15] | Amezquita A, Flechas SV, Lima AP, et al. Acoustic interference and recognition space within a complex assemblage of dendrobatid frogs. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108: 17058-17063 |
[16] | Sinsch U, Lumkemann K, Rosar K, et al. Acoustic niche partitioning in an anuran community inhabiting an afromontane wetland (Butare, Rwanda). African Zoology, 2012, 47: 60-73 |
[17] | Schmidt AKD, Balakrishnan R. Ecology of acoustic signalling and the problem of masking interference in insects. Journal of Comparative Physiology A-Neuroetho-logy Sensory Neural and Behavioral Physiology, 2015, 201: 133-142 |
[18] | Ey E, Fischer J. The “acoustic adaptation hypothesis”: A review of the evidence from birds, anurans and mammals. Bioacoustics-the International Journal of Animal Sound and Its Recording, 2009, 19: 21-48 |
[19] | Nicholls JA, Goldizen AW. Habitat type and density influence vocal signal design in satin bowerbirds. Journal of Animal Ecology, 2006, 75: 549-558 |
[20] | Kirschel ANG, Blumstein DT, Cohen RE, et al. Birdsong tuned to the environment: Green hylia song varies with elevation, tree cover, and noise. Behavioral Ecology, 2009, 20: 1089-1095 |
[21] | Bormpoudakis D, Sueur J, Pantis JD. Spatial heterogeneity of ambient sound at the habitat type level: Ecological implications and applications. Landscape Ecology, 2013, 28: 495-506 |
[22] | Sugai LSM, Silva TSF, Ribeiro JW, et al. Terrestrial passive acoustic monitoring: Review and perspectives. Bioscience, 2019, 69: 15-25 |
[23] | Digby A, Towsey M, Bell BD, et al. A practical comparison of manual and autonomous methods for acoustic monitoring. Methods in Ecology and Evolution, 2013, 4: 675-683 |
[24] | Toledo LF, Tipp C, Marquez R. The value of audiovisual archives. Science, 2015, 347: 484-484 |
[25] | Darras K, Batáry P, Furnas B, et al. Comparing the sampling performance of sound recorders versus point counts in bird surveys: A meta-analysis. Journal of Applied Ecology, 2018, 55: 2575-2586 |
[26] | Swiston KA, Mennill DJ. Comparison of manual and automated methods for identifying target sounds in audio recordings of pileated, pale-billed, and putative ivory-billed woodpeckers. Journal of Field Ornithology, 2009, 80: 42-50 |
[27] | Zhang L, Towsey M, Zhang JL, et al. Classifying and ranking audio clips to support bird species richness surveys. Ecological Informatics, 2016, 34: 108-116 |
[28] | Priyadarshani N, Marsland S, Castro I. Automated birdsong recognition in complex acoustic environments: A review. Journal of Avian Biology, 2018, 49: e01447 |
[29] | Shonfield J, Bayne EM. Autonomous recording units in avian ecological research: Current use and future applications. Avian Conservation and Ecology, 2017, 12:1247-1265 |
[30] | Darras K, Putz P, Fahrurrozi, et al. Measuring sound detection spaces for acoustic animal sampling and monitoring. Biological Conservation, 2016, 201: 29-37 |
[31] | Stowell D, Wood MD, Pamuła H, et al. Automatic acoustic detection of birds through deep learning: The first bird audio detection challenge. Methods in Ecology and Evolution, 2019, 10: 368-380 |
[32] | Gibb R, Browning E, Glover-Kapfer P, et al. Emerging opportunities and challenges for passive acoustics in ecological assessment and monitoring. Methods in Ecology and Evolution, 2018, 10: 169-185 |
[33] | Sueur J, Farina A, Gasc A, et al. Acoustic indices for biodiversity assessment and landscape investigation. Acta Acustica United with Acustica, 2014, 100: 772-781 |
[34] | Bradfer-Lawrence T, Gardner N, Bunnefeld L, et al. Guidelines for the use of acoustic indices in environmental research. Methods in Ecology and Evolution, 2019, 10: 1796-1807 |
[35] | Boelman NT, Asner GP, Hart PJ, et al. Multi-trophic invasion resistance in hawaii: Bioacoustics, field surveys, and airborne remote sensing. Ecological Applications, 2007, 17: 2137-2144 |
[36] | Sueur J, Pavoine S, Hamerlynck O, et al. Rapid acoustic survey for biodiversity appraisal. PLoS One, 2008, 3(12): e4065 |
[37] | Depraetere M, Pavoine S, Jiguet F, et al. Monitoring animal diversity using acoustic indices: Implementation in a temperate woodland. Ecological Indicators, 2012, 13: 46-54 |
[38] | Pieretti N, Farina A, Morri D. A new methodology to infer the singing activity of an avian community: The acoustic complexity index (ACI). Ecological Indicators, 2011, 11: 868-873 |
[39] | Villanueva-Rivera LJ, Pijanowski BC, Doucette J, et al. A primer of acoustic analysis for landscape ecologists. Landscape Ecology, 2011, 26: 1233-1246 |
[40] | Amandine G, JérMe S, Sandrine P, et al. Biodiversity sampling using a global acoustic approach: Contrasting sites with microendemics in new caledonia. PLoS One, 2013, 8(5): e65311 |
[41] | Buxton RT, McKenna MF, Clapp M, et al. Efficacy of extracting indices from large-scale acoustic recordings to monitor biodiversity. Conservation Biology, 2018, 32: 1174-1184 |
[42] | 李宁, 赵兆, 曾瑞文等. 声学指数与鸟类物种丰富度的相关关系分析. 网络新媒体技术, 2019, 8(5): 32-36 [Li N, Zhao Z, Zeng R-W, et al. Correlation analysis of acoustic indices and bird species richness. Journal of Network New Media, 2019, 8(5): 32-36] |
[43] | 伦可环, 张雁云, 夏灿玮. 基于声音指数的鸟类多样性监测. 生物学通报, 2017, 52(11): 1-5 [Lun K-H, Zhang Y-Y, Xia C-W. Monitoring bird diversity based on sound index. Bulletin of Biology, 2017, 52(11): 1-5] |
[44] | 王代平, 夏灿玮, 张丽君, 等. 野生动物声音定位系统模拟实验及精度分析. 动物学杂志, 2013, 48(5): 726-731 [Wang D-P, Xia C-W, Zhang L-J, et al. A simulation experiment on acoustic location system of wildlife and its accuracy analysis. Chinese Journal of Zoology, 2013, 48(5): 726-731] |
[45] | Gasc A, Francomano D, Dunning JB, et al. Future directions for soundscape ecology: The importance of ornithological contributions. The Auk, 2017, 134: 215-228 |
[46] | Mammides C, Goodale E, Dayananda SK, et al. Do acoustic indices correlate with bird diversity? Insights from two biodiverse regions in Yunnan Province, South China. Ecological Indicators, 2017, 82: 470-477 |
[47] | Abrahams C, Geary M. Combining bioacoustics and occupancy modelling for improved monitoring of rare breeding bird populations. Ecological Indicators, 2020, 112: 10.1016/j.ecolind.2020.106131 |
[48] | La VT, Nudds TD. Estimation of avian species richness: Biases in morning surveys and efficient sampling from acoustic recordings. Ecosphere, 2016, 7: e01294 |
[49] | Van Wilgenburg SL, Sólymos P, Kardynal KJ, et al. Paired sampling standardizes point count data from humans and acoustic recorders. Avian Conservation and Ecology, 2017, 12: 10.5751/ace-00975-120113 |
[50] | Gasc A, Sueur J, Jiguet F, et al. Assessing biodiversity with sound: Do acoustic diversity indices reflect phylogenetic and functional diversities of bird communities? Ecological Indicators, 2013, 25: 279-287 |
[51] | de Camargo U, Roslin T, Ovaskainen O. Spatio-temporal scaling of biodiversity in acoustic tropical bird communities. Ecography, 2019, 42: 1936-1947 |
[52] | Jeliazkov A, Bas Y, Kerbiriou C, et al. Large-scale semi-automated acoustic monitoring allows to detect temporal decline of bush-crickets. Global Ecology and Conservation, 2016, 6: 208-218 |
[53] | Aide T, Hernández-Serna A, Campos-Cerqueira M, et al. Species richness (of insects) drives the use of acoustic space in the tropics. Remote Sensing, 2017, 9: 10.3390/rs9111096 |
[54] | Gorres CM, Chesmore D. Active sound production of scarab beetle larvae opens up new possibilities for species-specific pest monitoring in soils. Science Report, 2019, 9(1): 10115 |
[55] | Xie J, Towsey M, Zhu M, et al. An intelligent system for estimating frog community calling activity and species richness. Ecological Indicators, 2017, 82: 13-22 |
[56] | Plenderleith TL, Stratford D, Lollback GW, et al. Calling phenology of a diverse amphibian assemblage in response to meteorological conditions. International Journal of Biometeorology, 2018, 62: 873-882 |
[57] | Both C, Grant T. Biological invasions and the acoustic niche: The effect of bullfrog calls on the acoustic signals of white-banded tree frogs. Biology Letters, 2012, 8: 714-716 |
[58] | Linke S, Gifford T, Desjonqueres C, et al. Freshwater ecoacoustics as a tool for continuous ecosystem monitoring. Frontiers in Ecology and the Environment, 2018, 16: 231-238 |
[59] | Locascio J, Mann D, Wilcox K, et al. Incorporation of acoustic sensors on a coastal ocean monitoring platform for measurements of biological activity. Marine Technology Society Journal, 2018, 52: 64-70 |
[60] | Desiderà E, Guidetti P, Panzalis P, et al. Acoustic fish communities: Sound diversity of rocky habitats reflects fish species diversity. Marine Ecology Progress Series, 2019, 608: 183-197 |
[61] | Kaplan MB, Lammers MO, Zang E, et al. Acoustic and biological trends on coral reefs off maui, hawaii. Coral Reefs, 2017, 37: 121-133 |
[62] | Eldridge A, Guyot P, Moscoso P, et al. Sounding out ecoacoustic metrics: Avian species richness is predicted by acoustic indices in temperate but not tropical habitats. Ecological Indicators, 2018, 95: 939-952 |
[63] | Rodriguez A, Gasc A, Pavoine S, et al. Temporal and spatial variability of animal sound within a neotropical forest. Ecological Informatics, 2014, 21: 133-143 |
[64] | Pekin BK, Jung J, Villanueva-Rivera LJ, et al. Modeling acoustic diversity using soundscape recordings and lidar-derived metrics of vertical forest structure in a neotropical rainforest. Landscape Ecology, 2012, 27: 1513-1522 |
[65] | Gage SH, Axel AC. Visualization of temporal change in soundscape power of a michigan lake habitat over a 4-year period. Ecological Informatics, 2014, 21: 100-109 |
[66] | Barnett CA, Briskie JV. Energetic state and the perfor-mance of dawn chorus in silvereyes (Zosterops lateralis). Behavioral Ecology and Sociobiology, 2007, 61: 579-587 |
[67] | Berg KS, Brumfield RT, Apanius V. Phylogenetic and ecological determinants of the neotropical dawn chorus. Proceedings of the Royal Society B-Biological Sciences, 2006, 273: 999-1005 |
[68] | Farina A, Ceraulo M, Bobryk C, et al. Spatial and temporal variation of bird dawn chorus and successive acoustic morning activity in a Mediterranean landscape. Bioacoustics, 2015, 24: 269-288 |
[69] | Tucker D, Gage SH, Williamson I, et al. Linking ecological condition and the soundscape in fragmented australian forests. Landscape Ecology, 2014, 29: 745-758 |
[70] | Hart PJ, Sebastián-González E, Tanimoto A, et al. Birdsong characteristics are related to fragment size in a neotropical forest. Animal Behaviour, 2018, 137: 45-52 |
[71] | Grant PBC, Samways MJ. Use of ecoacoustics to determine biodiversity patterns across ecological gradients. Conservation Biology, 2016, 30: 1320-1329 |
[72] | Burivalova Z, Purnomo, Wahyudi B, et al. Using soundscapes to investigate homogenization of tropical forest diversity in selectively logged forests. Journal of Applied Ecology, 2019, 56: 2493-2504 |
[73] | Gasc A, Gottesman BL, Francomano D, et al. Soundscapes reveal disturbance impacts: Biophonic response to wildfire in the Sonoran Desert Sky Islands. Landscape Ecology, 2018, 33: 1399-1415 |
[74] | Ospina OE, Villanueva-Rivera LJ, Corrada-Bravo CJ, et al. Variable response of anuran calling activity to daily precipitation and temperature: Implications for climate change. Ecosphere, 2013, 4: 47-59 |
[75] | Bruni A, Mennill DJ, Foote JR. Dawn chorus start time variation in a temperate bird community: Relationships with seasonality, weather, and ambient light. Journal of Ornithology, 2014, 155: 877-890 |
[76] | Buxton RT, Brown E, Sharman L, et al. Using bioacoustics to examine shifts in songbird phenology. Ecology and Evolution, 2016, 6: 4697-4710 |
[77] | Brewer PG, Hester K. Ocean acidification and the increasing transparency of the ocean to low-frequency sound. Oceanography, 2009, 22: 86-93 |
[78] | Aronson MFJ, La Sorte FA, Nilon CH, et al. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proceedings of the Royal Society B-Biological Sciences, 2014, 281: 20133330 |
[79] | Joo W, Gage SH, Kasten EP. Analysis and interpretation of variability in soundscapes along an urban-rural gradient. Landscape and Urban Planning, 2011, 103: 259-276 |
[80] | Marín-Gómez OH, Dáttilo W, Sosa-López JR, et al. Where has the city choir gone? Loss of the temporal structure of bird dawn choruses in urban areas. Landscape and Urban Planning, 2020, 194: 103665 |
[81] | Shannon G, McKenna MF, Angeloni LM, et al. A synthesis of two decades of research documenting the effects of noise on wildlife. Biological Reviews, 2016, 91: 982-1005 |
[82] | Halfwerk W, Holleman LJM, Lessells CM, et al. Negative impact of traffic noise on avian reproductive success. Journal of Applied Ecology, 2011, 48: 210-219 |
[83] | Luther D, Gentry K. Sources of background noise and their influence on vertebrate acoustic communication. Behaviour, 2013, 150: 1045-1068 |
[84] | Eldridge A, Casey M, Moscoso P, et al. A new method for ecoacoustics? Toward the extraction and evaluation of ecologically-meaningful soundscape components using sparse coding methods. PeerJ, 2016, 4: 10.7717/peerj.2108 |
[85] | Farina A. Perspectives in ecoacoustics: A contribution to defining a discipline. Journal of Ecoacoustics, 2018, 2: 10.22261/jea.trzd5i |
[86] | Lin TH, Tsao Y, Pettorelli N. Source separation in ecoacoustics: A roadmap towards versatile soundscape information retrieval. Remote Sensing in Ecology and Conservation, 2019, 10: 10.1002/rse2.141 |
[87] | Fairbrass AJ, Firman M, Williams C, et al. Citynet-deep learning tools for urban ecoacoustic assessment. Methods in Ecology and Evolution, 2018, 10: 186-197 |
[88] | Turner A, Fischer M, Tzanopoulos J. Sound-mapping a coniferous forest-perspectives for biodiversity monitoring and noise mitigation. PLoS One, 2018, 13(1): e0189843 |
[1] | 梁静香, 周永东, 王忠明, 张亚洲, 金海卫, 徐开达. 三门湾大型底栖动物群落结构及其与环境因子的关系 [J]. 应用生态学报, 2020, 31(9): 3187-3193. |
[2] | 高昌源, 付保荣, 李晓军, 于大炮, 巩宗强. 辽宁省生物多样性保护优先区识别 [J]. 应用生态学报, 2020, 31(5): 1673-1681. |
[3] | 王芳, 袁兴中, 熊森, 黄亚洲, 刘红, 潘远珍. 重庆澎溪河湿地自然保护区生物多样性空间格局及热点区 [J]. 应用生态学报, 2020, 31(5): 1682-1690. |
[4] | 王可洪, 袁兴中, 张冠雄, 武帅楷, 刘双爽, 张梦婕. 河岸无脊椎动物多样性维持机制研究进展 [J]. 应用生态学报, 2020, 31(3): 1043-1054. |
[5] | 胡文浩, 段美春, 那书豪, 张锋, 宇振荣. 坝上地区农田及两种恢复生境中蜘蛛多样性与群落特征 [J]. 应用生态学报, 2020, 31(2): 643-650. |
[6] | 徐佳文, 石福习, 张朝晖, 万松泽, 吴盼盼, 刘姗姗, 毛瑢. 中亚热带濒危植物毛红椿和南方红豆杉种内与种间竞争差异 [J]. 应用生态学报, 2020, 31(1): 1-8. |
[7] | 刘来盘, 沈文静, 薛堃, 刘标. 转g10-epsps基因耐除草剂大豆ZUTS-33对农田生物多样性的影响 [J]. 应用生态学报, 2020, 31(1): 122-128. |
[8] | 文志, 郑华, 欧阳志云. 生物多样性与生态系统服务关系研究进展 [J]. 应用生态学报, 2020, 31(1): 340-348. |
[9] | 姜勇, 徐柱文, 王汝振, 李慧, 张玉革. 长期施肥和增水对半干旱草地土壤性质和植物性状的影响 [J]. 应用生态学报, 2019, 30(7): 2470-2480. |
[10] | 刘子卿, 万宜乐, 郝玉娥. 线虫内寄生真菌资源及生防应用研究进展 [J]. 应用生态学报, 2019, 30(6): 2129-2136. |
[11] | 刘雅各, 袁凤辉, 王安志, 吴家兵, 郑兴波, 尹航, 关德新. 长白山生态功能区气候变化特征 [J]. 应用生态学报, 2019, 30(5): 1503-1512. |
[12] | 王彩云, 武春成, 曹霞, 贺字典, 曾晓玉, 姜涛. 生物炭对温室黄瓜不同连作年限土壤养分和微生物群落多样性的影响 [J]. 应用生态学报, 2019, 30(4): 1359-1366. |
[13] | 杨文莹, 孙露莹, 宋凤斌, 杨小琴, 张梦杰, 李书鑫, 朱先灿. 陆地农业生态系统丛枝菌根真菌物种多样性研究进展 [J]. 应用生态学报, 2019, 30(11): 3971-3979. |
[14] | 尹亚丽,王玉琴,李世雄,刘燕,赵文,马玉寿,鲍根生. 围封对退化高寒草甸土壤微生物群落多样性及土壤化学计量特征的影响 [J]. 应用生态学报, 2019, 30(1): 127-136. |
[15] | 周泉, 王龙昌, 邢毅, 马淑敏, 张小短, 陈娇, 石超. 间作紫云英下油菜根际土壤微生物群落功能特征 [J]. 应用生态学报, 2018, 29(3): 909-914. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||