欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2022, Vol. 33 ›› Issue (6): 1669-1678.doi: 10.13287/j.1001-9332.202206.031

• 研究论文 • 上一篇    下一篇

一株伯克霍尔德菌的筛选鉴定及溶磷性能优化

陈容彬, 左振宇, 黄博慧, 李凌凌*, 梅宇航   

  1. 武汉科技大学化学与化工学院, 武汉 430081
  • 收稿日期:2021-06-14 接受日期:2022-02-09 发布日期:2022-12-15
  • 通讯作者: *E-mail: 178382412@qq.com
  • 作者简介:陈容彬, 男, 1996年生, 硕士研究生。主要从事资源微生物利用研究。E-mail: 2536921248@qq.com
  • 基金资助:
    湖北省教育厅科学重点研究计划项目(D20191101)资助。

Screening and identification of a Burkholderia strain and optimization of its phosphate solubilizing capacity

CHEN Rong-bin, ZUO Zhen-yu, HUANG Bo-hui, LI Ling-ling*, MEI Yu-hang   

  1. College of Chemistry and Che-mical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
  • Received:2021-06-14 Accepted:2022-02-09 Published:2022-12-15

摘要: 为解决我国大部分耕地土壤中可溶性磷含量不足、植物生长困难的问题,本研究对一株溶磷微生物(PB)进行了筛选鉴定及溶磷性能优化。结果表明: 菌株PB属于伯克霍尔德菌。该菌具有固氮和分泌吲哚-3-乙酸(IAA)等植物促生能力,对大肠杆菌也表现出一定的抑制效果;在pH 8.0~10.0范围内,菌株PB仍然能够保持较高的活性和溶磷能力,具有良好的耐碱性;溶磷性能优化结果表明,在30 ℃、pH 7.0、180 r·min-1条件下,以葡萄糖为碳源、硫酸铵为氮源、磷酸三钙为磷源和添加50 μmol·L-1赖氨酸时,菌株PB的溶磷能力达到最优,溶磷量为569.33 mg·L-1,是优化前的1.9倍。该菌代谢过程中主要分泌柠檬酸、丙二酸和葡萄糖醛酸,添加赖氨酸后其分泌的有机酸种类不变,含量明显增加。盆栽试验表明,施用 PB菌肥能够显著促进大蒜幼苗的生长,而添加赖氨酸后促进效果更明显。与对照相比,PB加赖氨酸处理苗高增长18.6%,苗直径增长16.7%,地上部分鲜重和干重分别增长15.7%和22.1%,地下部分鲜重和干重分别增长22.0%和28.7%。土壤磷含量检测结果表明,PB和PB加赖氨酸处理土壤速效磷含量分别为对照的2.1和2.3倍,表明施用PB菌肥能够提高土壤中可溶性磷含量,而添加赖氨酸可以进一步强化PB菌肥的溶磷性能。

关键词: 溶磷细菌, 菌种鉴定, 溶磷性能优化, 赖氨酸, 促生作用

Abstract: In order to solve the problem that soil soluble phosphorus content in most cultivated land in China is insufficient and the plant growth is inhibited, a phosphate solubilizing microorganism (PB) was screened and identified, and its phosphate solubilizing performance was optimized. The results showed that the PB strain was belonged to Burkholderia stabilis. It had the ability of nitrogen fixation and indole-3-acetic acid (IAA) secretion, as well as a certain inhibitory effect on Escherichia coli. It could maintain high activity and phosphorus solubilizing ability at pH 8.0-10.0, indicating good alkali resistance. The results of phosphorus dissolving performance optimization showed that the phosphate solubilizing capacity of strain PB reached the best at 30℃, pH 7.0, 180 r·min-1, using glucose as carbon source, ammonium sulfate as nitrogen source, tricalcium phosphate as phosphorus source and adding 50 μmol·L-1 lysine. The amount of dissolved phosphorus was 569.33 mg·L-1, which was 1.9 times of that before optimization. The strain mainly secreted citric acid, malonic acid, and glucuronic acid during metabolism. After adding lysine, the type of organic acids secreted by the strain did not change, but the content increased significantly. Results from pot experiments showed that the application of PB bacterial fertilizer could significantly improve the growth and physiological indicators of garlic seedlings, and that the promotion effect was more obvious after adding lysine. Compared with the control, the height of seedling was increased by 18.6%, seedling diameter was increased by 16.7%, aboveground fresh and dry weight were increased by 22.1% and 15.7%, and belowground fresh and dry weight were increased by 22.0% and 28.7%, respectively in PB with lysine treatment. Soil available phosphorus content was 2.1 and 2.3 times of the control in PB and PB+lysine treatments, indicating that PB could improve soil available phosphate content. Adding lysine could strengthen such function.

Key words: phosphate solubilizing bacteria, identification of strain, optimization of phosphorus dissolving performance, lysine, growth-promoting effect