[1] Khan MS, Zaidi A, Ahemad M, et al. Plant growth promotion by phosphate solubilizing fungi: Current perspective. Archives of Agronomy and Soil Science, 2010, 56: 73-98 [2] 余旋, 朱天辉, 刘旭. 不同解磷菌剂对美国山核桃根际微生物和酶活性的影响. 林业科学, 2012, 48(2): 117-123 [3] 王惟帅, 杨世琦, 杨正礼. 新造地马铃薯根际固氮解磷微生物的分离与鉴定. 西北农林科技大学学报: 自然科学版, 2019, 47(8): 127-133, 143 [4] 王亚艺. 使用解磷细菌对小油菜产量及土壤磷含量的影响. 北方园艺, 2014(5): 155-158 [5] 柯春亮, 陈宇丰, 周登博, 等. 香蕉根际土壤解磷细菌的筛选、鉴定及解磷能力. 微生物学通报, 2015, 42(6): 1032-1042 [6] 林英, 司春灿, 韩文华, 等. 解磷微生物研究进展. 江西农业学报, 2017, 29(2): 99-103 [7] 王亚艺, 李松龄, 蔡晓剑, 等. 青藏高原溶磷菌菌株的分离筛选. 北方园艺, 2012(15): 161-163 [8] 杨存斌. 高效解磷细菌的分离筛选及其与磷矿物相互作用研究. 硕士论文. 南京: 南京农业大学, 2009 [9] Zhang SQ, Li JF, Shi SL, et al. Phosphate solubilizing microorganisms and phosphate solubilizing rhizobium: Mini review. Applied Mechanics and Materials, 2013, 295: 2328-2332 [10] 唐岷宸, 李文静, 宋天顺, 等. 一株高效解磷菌的筛选及其解磷效果验证. 生物技术通报, 2020, 36(6): 102-109 [11] Fabre B, Simonet J. Electroactive polymers containing crown ether or polyether ligands as cation-responsive materials. Coordination Chemistry Reviews, 1998, 178: 1211-1250 [12] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000: 25-82 [13] 冯哲叶, 陈莎莎, 王文超, 等. 几株溶磷细菌的筛选和鉴定及其溶磷效果. 南京农业大学学报, 2017, 40(5): 842-849 [14] Ma CY, Zhang Y, Ma WB, et al. Identification of plant growth promoting rhizobacteria Astragalus membranaceus and their effectives. Acta Prataculturae Sinica, 2017, 108: 121-125 [15] Behera BC, Singdevsachan SK, Mishra RR, et al. Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrove: A review. Biocatalysis & Agricultural Biotechnology, 2014, 3: 181-185 [16] 钟传青. 解磷微生物溶解磷矿粉和土壤难溶磷的特性及其溶磷方式研究. 博士论文. 南京: 南京农业大学, 2004 [17] Othman R, Panhwar QA. Phosphate-Solubilizing Bacteria Improves Nutrient Uptake in Aerobic Rice. Berlin: Springer, 2014 [18] 李剑峰. 解磷根瘤菌诱变选育及抗污染菌剂制备关键技术研究. 博士论文. 兰州: 甘肃农业大学, 2011 [19] Braz RR, Nahas E. Synergistic action of both Aspergillus niger and Burkholderia cepacea in co-culture increases phosphate solubilization in growth medium. FEMS Microbiology Letters , 2012, 48: 73-79 [20] 赵小蓉, 林启美. 微生物解磷的研究进展. 土壤肥料, 2001, 5(3): 7-11 [21] 钱婷, 叶建仁. 巨大芽孢杆菌ZS-3溶无机磷机制及其对樟树的促生作用. 生物技术通报, 2020, 36(8): 45-52 [22] Patel DK, Archana G, Kumar GN. Variation in the nature of organic acid secretion and mineral phosphate solubilization by Citrobacter in the presence of different sugars. Current Microbiology, 2008, 56: 168-174 [23] 赵卫松, 郭庆港, 于稳欠, 等. 解淀粉芽胞杆菌PHODB35的解磷特性及其对番茄的促生作用. 微生物学报, 2020, 60(7): 1370-1383 [24] 巩文峰, 邢瑜琪, 卓玛曲措, 等. 一株色季拉山长鞭红景d根际溶磷菌的分离、鉴定及其低温适应性分析. 南方农业学报, 2018, 49(2): 280-286 [25] 秦利均, 杨永柱, 杨星勇. 土壤解磷微生物解磷、解磷机制研究进展. 生命科学研究, 2019, 23(1): 59-64, 86 [26] Russell NJ. Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles, 2000, 4: 83-90 [27] Arpigny JL, Feller G, Gerday C. Cloning, sequence and structural features of a lipase from the Antarctic facultative psychrophile Psychorobacter immobilis B10. Biochimica Biophysica Acta, 1993, 1171: 331-333 [28] Brenchley JE. Psychrophilic microorganisms and their cold-active enzymes. Journal of Industrial Microbiology & Biotechnology, 1996, 17: 432-437 [29] 崔晓双, 王伟, 张如, 等. 基于根际营养竞争的植物根际促生菌的筛选及促生效应研究. 南京农业大学学报, 2015, 38(6): 958-966 [30] 张淑红. 1株溶磷细菌的筛选及其溶磷物质分析. 河南农业科学, 2014, 43(8): 64-67 |