[1] Yang ZJ, Chen SD, Liu XF, et al. Loss of soil organic carbon following natural forest conversion to Chinese fir plantation. Forest Ecology and Management, 2019, 449: 117476 [2] Pang DB, Cui M, Liu YG, et al. Responses of soil labile organic carbon fractions and stocks to different vegetation restoration strategies in degraded karst ecosystems of Southwest China. Ecological Engineering, 2019, 138: 391-402 [3] 梁东哲, 赵雨森, 曹杰, 等. 不同恢复方式下大兴安岭重度火烧迹地林地土壤温室气体通量. 生态学报, 2019, 39(21): 7950-7959 [4] Yan T, Lu XT, Yang K, et al. Leaf nutrient dynamics and nutrient resorption: A comparison between larch plantations and adjacent secondary forests in Northeast China. Journal of Plant Ecology, 2015, 9: 165-173 [5] 张楠, 杨智杰, 胥超, 等. 中亚热带森林转换对凋落物养分归还及养分利用效率的影响. 应用生态学报, 2022, 33(2): 321-328 [6] Michel K, Matzner E, Dignac MF, et al. Properties of dissolved organic matter related to soil organic matter quality and nitrogen additions in Norway spruce forest floors. Geoderma, 2006, 130: 250-264 [7] Yang YS, Wang LX, Yang ZJ, et al. Large ecosystem service benefits of assisted natural regeneration. Journal of Geophysical Research: Biogeosciences, 2018, 123: 676-687 [8] Pardini G, Gispert M, Dunjo G. Relative influence of wildfire on soil properties and erosion processes in diffe-rent Mediterranean environments in NE Spain. Science of the Total Environment, 2004, 328: 237-246 [9] 康根丽, 杨玉盛, 司友涛, 等. 米槠人促更新林与杉木人工林叶片及凋落物溶解性有机物的数量和光谱学特征. 生态学报, 2014, 34(8): 1946-1955 [10] 陈滢伊, 司友涛, 鲍勇, 等. 隔离降雨对亚热带米槠天然林土壤可溶性有机质数量及光谱学特征的影响. 应用生态学报, 2019, 30(9): 2964-2972 [11] Yang YS, Guo JF, Chen GS, et al. Effects of forest conversion on soil labile organic carbon fractions and aggregate stability in subtropical China. Plant and Soil, 2009, 323: 153-162 [12] Luo XD, Hou EQ, Zhang LL, et al. Effects of forest conversion on carbon-degrading enzyme activities in subtropical China. Science of the Total Environment, 2019, 696: 133968 [13] Laik R, Kumar K, Das DK, et al. Labile soil organic matter pools in a calciorthent after 18 years of afforestation by different plantations. Applied Soil Ecology, 2009, 42: 71-78 [14] 黄艳波, 吴福忠, 杨玉盛, 等. 湿润亚热带森林锰、铜、锌随降雨分配的迁移动态特征. 环境科学学报, 2021, 41(11): 4710-4719 [15] Curtin D, Wright CE, Beare MH, et al. Hot water-extractable nitrogen as an indicator of soil nitrogen availa-bility. Soil Science Society of America Journal, 2006, 70: 1512-1521 [16] Guo XJ, Li CM, Zhu QL, et al. Characterization of dissolved organic matter from biogas residue composting using spectroscopic techniques. Waste Management, 2018, 78: 301-309 [17] 程蕾, 林开淼, 周嘉聪, 等. 氮沉降对毛竹林土壤可溶性有机质数量与光谱学特征的影响. 应用生态学报, 2019, 30(5): 1754-1762 [18] Zsolnay A, Baigar E, Jimenez M, et al. Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere, 1999, 38: 45-50 [19] Zsolnay A. Dissolved organic matter: Artefacts, definitions, and functions. Geoderma, 2003, 113: 187-209 [20] Bu XL, Wang LM, Ma WB, et al. Spectroscopic cha-racterization of hot-water extractable organic matter from soils under four different vegetation types along an elevation gradient in the Wuyi Mountains. Geoderma, 2010, 159: 139-146 [21] Kalbitz K, Schmerwitz J, Schwesig D, et al. Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma, 2003, 113: 273-291 [22] Qualls RG, Haines BL, Swank WT, et al. Soluble organic and inorganic nutrient fluxes in clearcut and mature deciduous forests. Soil Science Society of America Journal, 2000, 64: 1068-1077 [23] 杨玉盛, 郭剑芬, 林鹏, 等. 格氏栲天然林与人工林粗木质残体碳库及养分库. 林业科学, 2005, 41(3): 7-11 [24] Kumaraswamy S, Mendham DS, Grove TS, et al. Harvest residue effects on soil organic matter, nutrients and microbial biomass in eucalypt plantations in Kerala, India. Forest Ecology and Management, 2014, 328: 140-149 [25] Cherubin MR, Oliveira DMD, Feigl BJ, et al. Crop resi-due harvest for bioenergy production and its implications on soil functioning and plant growth: A review. Scientia Agricola, 2018, 75: 255-272 [26] Tong H, Simpson AJ, Paul EA, et al. Land-use change and environmental properties alter the quantity and molecular composition of soil-derived dissolved organic matter. ACS Earth and Space Chemistry, 2021, 5: 1395-1406 [27] 姜培坤. 不同林分下土壤活性有机碳库研究. 林业科学, 2005, 41(1): 10-13 [28] 王齐磊, 江韬, 赵铮, 等. 三峡库区典型农业小流域土壤溶解性有机质的紫外-可见及荧光特征. 环境科学, 2015, 36(3): 879-887 [29] Li G, Khan S, Ibrahim M, et al. Biochars induced modi-fication of dissolved organic matter (DOM) in soil and its impact on mobility and bioaccumulation of arsenic and cadmium. Journal of Hazardous Materials, 2018, 348: 100-108 [30] Fan LC, Han WY. Soil respiration after forest conversion to tea gardens: A chronosequence study. Catena, 2020, 190: 104532 [31] 孙颖, 高颖, 陈惠, 等. 亚热带米槠林不同更新方式对土壤可溶性有机质降解性的影响. 应用生态学报, 2020, 31(4): 1073-1082 [32] 康根丽, 杨玉盛, 司友涛, 等. 马尾松与芒萁鲜叶及凋落物水溶性有机物的溶解特征和光谱学特征. 热带亚热带植物学报, 2014, 22(4): 357-366 [33] Guo JF, Chen GS, Xie JS, et al. Clear-cutting and slash burning effects on soil CO2 efflux partitioning in Chinese fir and evergreen broadleaved forests in subtropical China. Soil Use and Management, 2016, 32: 220-229 [34] 孙龙, 孙奥博, 胡同欣. 火干扰对森林生态系统土壤呼吸组分的影响研究进展. 生态学报, 2021, 41(17): 7073-7083 [35] 申钊颖, 弓晓峰, 江良, 等. 利用荧光区域积分法解析鄱阳湖DOM组成及来源. 环境科学与技术, 2019, 42(5): 196-203 [36] Bu XL, Ding JM, Wang LM, et al. Biodegradation and chemical characteristics of hot-water extractable organic matter from soils under four different vegetation types in the Wuyi Mountains, southeastern China. European Journal of Soil Biology, 2011, 47: 102-107 [37] Lehmann J, Hansel CM, Kaiser C, et al. Persistence of soil organic carbon caused by functional complexity. Nature Geoscience, 2020, 13: 529-534 |