应用生态学报 ›› 2017, Vol. 28 ›› Issue (7): 2369-2378.doi: 10.13287/j.1001-9332.201707.025
徐晓梧, 余新晓*, 贾国栋, 李瀚之, 路伟伟, 刘自强
收稿日期:
2017-02-27
修回日期:
2017-05-15
发布日期:
2017-07-18
通讯作者:
*mail:yuxinxiao111@126.com
作者简介:
徐晓梧,女,1991年生,硕士研究生.主要从事森林与生态环境研究.E-mail:xuxiaowu911121@163.com
基金资助:
XU Xiao-wu, YU Xin-xiao*, JIA Guo-dong, LI Han-zhi, LU Wei-wei, LIU Zi-qiang
Received:
2017-02-27
Revised:
2017-05-15
Published:
2017-07-18
Contact:
*mail:yuxinxiao111@126.com
Supported by:
摘要: 土壤-植被-大气连续体(SPAC)是陆地水文学、生态学和全球变化领域的重要研究对象,其水碳循环过程及耦合机制是前沿性问题.稳定同位素技术示踪、整合和指示的特征有助于评估分析生态系统固碳和耗水情况.本文在简述稳定同位素应用原理和技术的基础上,重点阐释了基于稳定同位素光学技术的SPAC系统水碳交换研究进展,包括:在净碳通量中拆分光合与呼吸量,在蒸散通量中拆分蒸腾与蒸发量,以及在系统尺度上的水碳耦合研究.新兴的技术和方法实现了生态系统尺度上长期高频的同位素观测,但在测量精准度、生态系统呼吸拆分、非稳态模型适应性、尺度转换和水碳耦合机制等方面存在挑战.本文探讨了现有主要研究成果、局限性以及未来研究展望,以期对稳定同位素生态学领域的新研究和技术发展有所帮助.
徐晓梧, 余新晓, 贾国栋, 李瀚之, 路伟伟, 刘自强. 基于稳定同位素的SPAC水碳拆分及耦合研究进展[J]. 应用生态学报, 2017, 28(7): 2369-2378.
XU Xiao-wu, YU Xin-xiao, JIA Guo-dong, LI Han-zhi, LU Wei-wei, LIU Zi-qiang. A review of water and carbon flux partitioning and coupling in SPAC using stable isotope techniques[J]. Chinese Journal of Applied Ecology, 2017, 28(7): 2369-2378.
[1] IPCC.Climate Change 2013: The Physical Science Basis. Cambridge: Cambridge University Press, 2014 [2] Yu G-R (于贵瑞), Gao Y (高 扬), Wang Q-F (王秋凤), et al. Discussion on the key processes of carbon-nitrogen-water coupling cycles and biological regulation mechanisms in terrestrial ecosystem. Chinese Journal of Eco-Agriculture (中国生态农业学报), 2013, 21(1): 1-13 (in Chinese) [3] Keeling CD, Mook WG, Tans PP. Recent trends in the 13C-12C ratio of atmospheric carbon-dioxide. Nature, 1979, 277: 121-123 [4] Farquhar GD, O’Leary MH, Berry JA. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Austra-lian Journal of Plant Physiology, 1982, 13: 281-292 [5] Francey RJ, Tans PP. Latitudinal variation in oxygen-18 of atmospheric CO2. Nature, 1987, 327: 495-497 [6] Farquhar GD, Ehleringer JR, Hubick KT. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology & Plant Molecular Biology, 1989, 40: 503-537 [7] Farquhar GD, Lloyd J, Taylor JA, et al. Vegetation effects on the isotope composition of oxygen in atmospheric CO2. Nature, 1993, 365: 439-443 [8] Welp LR, Keeling RF, Meijer HA, et al. Interannual variability in the oxygen isotopes of atmospheric CO2 driven by El Nino. Nature, 2011, 477: 579-582 [9] Yakir D, Wang XF. Fluxes of CO2 and water between terrestrial vegetation and the atmosphere estimated from isotope measurements. Nature, 1996, 380: 515-517 [10] Yepez EA, Williams DG, Scott RL, et al. Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic composition of water vapor. Agricultural and Forest Meteorology, 2003, 119: 53-68 [11] Bowling DR, Burns SP, Conway TJ, et al. Extensive observations of CO2 carbon isotope content in and above a high-elevation subalpine forest. Global Biogeochemical Cycles, 2005, 19: 109-127 [12] Wen XF, Sun XM, Zhang SC, et al. Continuous mea-surement of water vapor D/H and 18O/16O isotope ratios in the atmosphere. Journal of Hydrology, 2008, 349: 489-500 [13] Barbour MM, Hunt JE, Kodama N, et al. Rapid changes in δ13C of ecosystem-respired CO2, after sunset are consistent with transient 13C enrichment of leaf respired CO2. New Phytologist, 2011, 190: 990-1002 [14] Santos E, Wagner-Riddle C, Lee X, et al. Temporal dynamics of oxygen isotope compositions of soil and canopy CO2 fluxes in a temperate deciduous forest. Journal of Geophysical Research Biogeosciences, 2014, 119: 996-1013 [15] Wehr R, Munger JW, Mcmanus JB, et al. Seasonality of temperate forest photosynthesis and daytime respiration. Nature, 2016, 534: 680-683 [16] Yakir D, Sternberg LDL. The use of stable isotopes to study ecosystem gas exchange. Oecologia, 2000, 123: 297-311 [17] Pataki DE, Ehleringer JR, Flanagan LB, et al. The application and interpretation of Keeling plots in terrestrial carbon cycle research. Global Biogeochemical Cycles, 2003, 17: 179-190 [18] Flanagan LB, Ehleringer JR, Pataki DE. Stable Isotopes and Biosphere-atmosphere Interactions. Amsterdam: Elsevier, 2005: 408-427 [19] Dawson TE, Siegwolf RTW. Stable Isotopes as Indicators of Ecological Change. Amsterdam: Elsevier, 2007 [20] Werner C, Gessler A. Diel variations in the carbon isotope composition of respired CO2 and associated carbon sources: A review of dynamics and mechanisms. Biogeosciences Discussions, 2011, 8: 2183-2233 [21] Werner C, Schnyder H, Cuntz M, et al. Progress and challenges using stable isotopes to trace plant carbon and water relations across scales. Biogeosciences, 2012, 9: 3083-3111 [22] Griffis TJ. Tracing the flow of carbon dioxide and water vapor between the biosphere and atmosphere: A review of optical isotope techniques and their application. Agricultural and Forest Meteorology, 2013, 174-175: 85-109 [23] Chen S-P (陈世苹), Bai Y-F (白永飞), Han X-G (韩兴国). Applications of stable carbon isotope techniques to ecological research. Acta Phytoecologica Sinica (植物生态学报), 2002, 26(5): 549-560 (in Chinese) [24] Yu G-R (于贵瑞), Wang S-Q (王绍强), Chen B-Q (陈泮勤), et al. Isotope tracer approaches in soil organic carbon cycle research. Advances in Earth Science (地球科学进展), 2005, 20(5): 568-577 (in Chinese) [25] Zheng X-B (郑兴波), Zhang Y (张 岩), Gu G-H (顾广虹). Application of carbon isotope technique in forest ecosystem carbon cycling research. Chinese Journal of Ecology (生态学杂志), 2005, 24(11): 1334-1338 (in Chinese) [26] Liu W (刘 微), Lv H-H (吕豪豪), Chen Y-X (陈英旭), et al. Application of stable carbon isotope technique in the research of carbon cycling in soil-plant system. Chinese Journal of Applied Ecology (应用生态学报), 2008, 19(3): 674-680 (in Chinese) [27] Xu W-Q (许文强), Chen X (陈 曦), Luo G-P (罗格平), et al. Progress of research on soil carbon cycle using carbon isotope approach. Arid Land Geography (干旱区地理), 2014, 37(5): 980-987 (in Chinese) [28] Sun S-F (孙双峰), Huang J-H (黄建辉), Lin G-H (林光辉), et al. Application of stable isotope technique in the study of plant water use. Acta Ecologica Sinica (生态学报), 2005, 25(9): 1362-1371 (in Chinese) [29] Li J-Z (李嘉竹), Liu X-Z (刘贤赵). Advances of stable hydrogen and oxygen isotope applied in SPAC water cycle. Journal of Desert Research (中国沙漠), 2008, 28(4): 787-794 (in Chinese) [30] Zhang Y-C (张玉翠), Sun H-Y (孙宏勇), Shen Y-J (沈彦俊), et al. Application of hydrogen and oxygen stable isotopes technique in the water depletion of ecosystems. Scientia Gographica Sinica (地理科学), 2012, 32(3): 289-293 (in Chinese) [31] Deng W-P (邓文平), Yu X-X (余新晓), Jia G-D (贾国栋), et al. Comparison of the methods using stable hydrogen and oxygen isotope to distinguish the water source of Quercus variabilis in dry season. Journal of Basic Science and Engineering (应用基础与工程科学学报), 2013, 21(3): 412-422 (in Chinese) [32] Sun W (孙 伟), Lin G-H (林光辉), Chen S-P (陈世苹), et al. Applications of stable isotope techniques and keeling plot approach to carbon and water exchange studies of terrestrial ecosystems. Acta Phytoecologica Sinica (植物生态学报), 2005, 29(5): 851-862 (in Chinese) [33] Zheng Q-H (郑秋红), Wang B (王 兵). Applications of stable isotope techniques to determine components of CO2 and H2O fluxes in forest ecosystems. Forest Research (林业科学研究), 2009, 22(1): 109-114 (in Chinese) [34] Lin G-H (林光辉). Stable Isotope Ecology. Beijing: Higher Education Press, 2013 (in Chinese) [35] Dawson T, Brooks P. Fundamentals of stable isotope chemistry and measurement// Unkovich M, Pate J, McNeill A, eds. Stable Isotope Techniques in the Study of Biological Processes and Functioning of Ecosystems. Amsterdam: Kluwer Academic Publishers, 2001 [36] Cappa CD. Isotopic fractionation of water during evaporation. Journal of Geophysical Research, 2003, 108: 4525-4534 [37] Farquhar GD. Optimal stomatal control in relation of leaf area and nitrogen content. Silva Fennica, 2002, 36: 625-637 [38] Lee X, Griffis T, Baker J, et al. Canopy-scale kinetic fractionation of atmospheric carbon dioxide and water vapor isotopes. Global Biogeochemical Cycles, 2009, 23: 754 [39] Gillon J, Yakir D. Influence of carbonic anhydrase acti-vity in terrestrial vegetation on the δ18O content of atmospheric CO2. Science, 2001, 291: 2584-2587 [40] Brooks JR, Barnard HR, Coulombe R, et al. Ecohydrologic separation of water between trees and streams in a Mediterranean climate. Nature Geoscience, 2009, 3: 100-104 [41] Kerstel E, Gianfrani L. Advances in laser-based isotope ratio measurements: Selected applications. Applied Phy-sics B, 2008, 92: 439-449 [42] Wen X, Lee X, Sun X, et al. Intercomparison of four commercial analyzers for water vapor isotope measurement. Journal of Atmospheric & Oceanic Technology, 2012, 29: 235-247 [43] Bowling DR, Sargent S, Tanner B, et al. Tunable diode laser absorption spectroscopy for stable isotope studies of ecosystem-atmosphere CO2 exchange. Agricultural and Forest Meteorology, 2003b, 118: 1-19, 81 [44] Griffis TJ, Baker JM, Sargent SD, et al. Measuring field-scale isotopic CO2 fluxes with tunable diode laser absorption spectroscopy and micrometeorological techniques. Agricultural and Forest Meteorology, 2004, 124: 15-29 [45] Lee X, Sargent S, Smith R, et al. In-situ measurement of the water vapor 18O/16O isotope ratio for atmospheric and ecological applications. Journal of Atmospheric & Oceanic Technology, 2005, 22: 555-565 [46] Schaeffer SM, Miller JB, Vaughn BH, et al. Long-term field performance of a tunable diode laser absorption spectrometer for analysis of carbon isotopes of CO2 in forest air. Atmospheric Chemistry & Physics, 2008, 8: 5263-5277 [47] Griffith D, Deutscher N, Caldow C, et al. A Fourier transform infrared trace gas and isotope analyser for atmospheric applications. Atmospheric Measurement Techniques Discussions, 2012, 5: 3717-3769 [48] Wang L, Caylor KK, Dragoni D. On the calibration of continuous, high-precision δ18O and δ2H measurements using an off-axis integrated cavity output spectrometer. Rapid Communications in Mass Spectrometry, 2009, 23: 530-536 [49] Mcalexander I, Rau GH, Liem J, et al. Deployment of a carbon isotope ratiometer for the monitoring of CO2 sequestration leakage. Analytical Chemistry, 2011, 83: 6223-6229 [50] Sturm P, Knohl A. Water vapor δ2H and δ18O measurements using off-axis integrated cavity output spectroscopy. Atmospheric Measurement Techniques, 2009, 3: 67-77 [51] Midwood AJ, Millard P. Challenges in measuring the δ13C of the soil surface CO2 efflux. Rapid Communications in Mass Spectrometry, 2011, 25: 232-242 [52] Pang JP, Wen XF, Sun XM, et al. Intercomparison of two cavity ring-down spectroscopy analyzers for atmospheric (CO2)-C-13/(CO2)-C-12 measurement. Atmospheric Measurement Techniques, 2016, 9: 3879-3891 [53] Kool D, Agam N, Lazarovitch N, et al. A review of approaches for evapotranspiration partitioning. Agricultural and Forest Meteorology, 2014, 184: 56-70 [54] Parkes SD, Mccabe MF, Griffiths AD, et al. Response of water vapour D-excess to land-atmosphere interactions in a semi-arid environment. Hydrology & Earth System Sciences Discussions, 2016, 271: 1-44 [55] Wenninger J, Beza DT, Uhlenbrook S. Experimental investigations of water fluxes within the soil-vegetation-atmosphere system: Stable isotope mass-balance approach to partition evaporation and transpiration. Physics & Chemistry of the Earth, 2010, 35: 565-570 [56] Gazis C, Feng X. A stable isotope study of soil water: Evidence for mixing and preferential flow paths. Geoderma, 2004, 119: 97-111 [57] Phillips DL, Newsome SD, Gregg JW. Combining sources in stable isotope mixing models: Alternative methods. Oecologia, 2005, 144: 520-527 [58] Williams DG, Cable W, Hultine K, et al. Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agricultural and Forest Meteorology, 2004, 125: 241-258 [59] Dubbert M, Cuntz M, Piayda A, et al. Partitioning evapotranspiration: Testing the Craig and Gordon model with field measurements of oxygen isotope ratios of eva-porative fluxes. Journal of Hydrology, 2013, 496: 142-153 [60] Welp LR, Lee X, Kim K, et al. 18O of water vapour, evapotranspiration and the sites of leaf water evaporation in a soybean canopy. Plant, Cell & Environment, 2008, 31: 1214-1228 [61] Lee X, Kim K, Smith R. Temporal variations of the 18O/16O signal of the whole-canopy transpiration in a temperate forest. Global Biogeochemical Cycles, 2007, 21: 130-144 [62] Farquhar GD, Gernusak LA. On the isotopic composition of leaf water in the non-steady state. Functional Plant Biology, 2005, 32: 293-303 [63] Farquhar GD, Cernusak LA, Barnes B. Heavy water fractionation during transpiration. Plant Physiology, 2007, 143: 11-18 [64] Griffis TJ, Zhang J, Baker JM, et al. Determining carbon isotope signatures from micrometeorological mea-surements: Implications for studying biosphere-atmosphere exchange processes. Boundary-Layer Meteorology, 2007, 123: 295-316 [65] Xiao W, Lee X, Wen X, et al. Modeling biophysical controls on canopy foliage water 18O enrichment in wheat and corn. Global Change Biology, 2012, 18: 1769-1780 [66] Moreira M, Sternberg L, Martinelli L, et al. Contribution of transpiration to forest ambient vapour based on isotopic measurements. Global Change Biology, 1997, 3: 439-450 [67] Griffis TJ, Sargent SD, Baker JM, et al. Direct mea-surement of biosphere-atmosphere isotopic CO2, exchange using the eddy covariance technique. Journal of Geophysical Research Atmospheres, 2008, 113: 693-702 [68] Wang L, Caylor K, Villegas J, et al. Partitioning evapotranspiration across gradients of woody plant cover: Assessment of a stable isotope technique. Geophysical Research Letters, 2010, 37: 232-256 [69] Good SP, Soderberg K, Wang L, et al. Uncertainties in the assessment of the isotopic composition of surface fluxes: A direct comparison of techniques using laser-based water vapor isotope analyzers. Journal of Geophysical Research: Atmospheres, 2012, 117: D15301 [70] Wang L, Niu S, Good SP, et al. The effect of warming on grassland evapotranspiration partitioning using laser-based isotope monitoring techniques. Geochimica et Cosmochimica Acta, 2013, 111: 28-38 [71] Wen XF, Lee X, Sun XM, et al. Dew water isotopic ratios and their relationships to ecosystem water pools and fluxes in a cropland and a grassland in China. Oecologia, 2012, 168: 549-561 [72] Sun S, Meng P, Zhang J, et al. Partitioning oak woodland evapotranspiration in the rocky mountainous area of North China was disturbed by foreign vapor, as estimated based on non-steady-state 18O isotopic composition. Agricultural and Forest Meteorology, 2014, 184: 36-47 [73] Sun S-J (孙守家), Meng P (孟 平), Zhang J-S (张劲松), et al. Variation of vapor oxygen isotopic composition and partitioning evapotranspiration of oak woodland in the low hilly area of north China. Acta Ecologica Sinica (生态学报), 2015, 35(8): 2592-2601 (in Chinese) [74] Cai MY, Wang L, Parkes SD, et al. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ, measurements. Journal of Hydrology, 2015, 523: 67-78 [75] Wang P, Yamanaka T, Li XY, et al. Partitioning eva-potranspiration in a temperate grassland ecosystem: Numerical modeling with isotopic tracers. Agricultural and Forest Meteorology, 2015, 208: 16-31 [76] Lu X, Liang LL, Wang L, et al. Partitioning of evapotranspiration using a stable isotope technique in an arid and high temperature agricultural production system. Agricultural Water Management, 2017, 179: 103-109 [77] Wehr R, Saleska SR. An improved isotopic method for partitioning net ecosystem-atmosphere CO2 exchange. Agricultural and Forest Meteorology, 2015, 214: 515-531 [78] Bowling DR, Tans PP, Monson RK. Partitioning net ecosystem carbon exchange with isotopic fluxes of CO2. Global Change Biology, 2001, 7: 127-145 [79] Pury DGG, Farquhar GD. Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant, Cell & Environment, 1997, 20: 537-557 [80] Ogée J, Peylin P, Cuntz M, et al. Partitioning net ecosystem carbon exchange into net assimilation and respiration with canopy-scale isotopic measurements: An error propagation analysis with 13CO2 and CO18O data. Global Biogeochemical Cycles, 2004, 18: 167-174 [81] Tu K, Dawson T. Partitioning ecosystem respiration using stable carbon isotope analyses of CO2// Flanagan LB, Ehleringer JR, Pataki DE, eds. Stable Isotopes and Biosphere: Atmosphere Interactions. Amsterdam: Elsevier, 2005, 1: 125-153 [82] Greaver T, Sternberg L, Schaffer B, et al. An empirical method of measuring CO2, recycling by isotopic enrichment of respired CO2. Agricultural and Forest Meteorology, 2005, 128: 67-79 [83] Zobitz JM, Keener JP, Schnyder H, et al. Sensitivity analysis and quantification of uncertainty for isotopic mi-xing relationships in carbon cycle research. Agricultural and Forest Meteorology, 2006, 136: 56-75 [84] Wingate L, Ogée J, Burlett R, et al. Strong seasonal disequilibrium measured between the oxygen isotope signals of leaf and soil CO2 exchange. Global Change Biology, 2010, 16: 3048-3064 [85] Wingate L, Ogee J, Burlett R, et al. Photosynthetic carbon isotope discrimination and its relationship to the carbon isotope signals of stem, soil and ecosystem respiration. New Phytologist, 2010, 188: 576-589 [86] Fassbinder JJ, Griffis TJ, Baker JM. Interannual, seasonal, and diel variability in the carbon isotope composition of respiration in a C3/C4 agricultural ecosystem. Agricultural and Forest Meteorology, 2012, 153: 144-153 [87] Bowling DR, Egan JE, Hall SJ, et al. Environmental forcing does not induce diel or synoptic variation in carbon isotope content of forest soil respiration. Biogeosciences Discussions, 2015, 12: 6361-6404 [88] Bowling DR, Baldocchi DD, Monson RK. Dynamics of isotopic exchange of carbon dioxide in a Tennessee deciduous forest. Global Biogeochemical Cycles, 1999, 13: 903-922 [89] Bowling DR, McDowell NG, Welker JM, et al. Oxygen isotope content of CO2 in nocturnal ecosystem respiration. 2. Short-term dynamics of foliar and soil component fluxes in an old-growth ponderosa pine forest. Global Biogeochemical Cycles, 2003, 17: 34-1-34-12 |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||