欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2018, Vol. 29 ›› Issue (2): 421-432.doi: 10.13287/j.1001-9332.201802.015

• 研究报告 • 上一篇    下一篇

极端高温对亚热带人工针叶林净碳吸收影响的多时间尺度分析

张弥1*, 温学发2, 张雷明2, 王辉民2, 郭一文3, 于贵瑞2   

  1. 1南京信息工程大学气候与环境变化国际合作联合实验室大气环境中心, 南京210044;
    2中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室, 北京100101;
    3陕西省咸阳市武功县气象局, 陕西咸阳712200
  • 收稿日期:2017-07-21 出版日期:2018-02-18 发布日期:2018-02-18
  • 通讯作者: E-mail: zhangm.80@nuist.edu.cn
  • 作者简介:张 弥, 女, 1980年生, 博士, 讲师. 主要从事气候变化与陆地生态系统碳水循环研究. E-mail: zhangm.80@nuist.edu.cn
  • 基金资助:

    本文由国家自然科学基金项目(31200377,41575147)、中国科学院战略性先导科技专项(XDA05050208)和高等学校博士学科点专项基金项目(20123228120003)资助

Multi-temporal scale analysis of impacts of extreme high temperature on net carbon uptake in subtropical coniferous plantation.

ZHANG Mi1*, WEN Xue-fa2, ZHANG Lei-ming2, WANG Hui-min2, GUO Yi-wen3, YU Gui-rui2   

  1. 1Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change (ILCEC), Nanjing University of Information Science & Technology, Nanjing 210044, China;
    2Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
    3Wugong Meteorological Service, Wugong 712200, Shaanxi, China
  • Received:2017-07-21 Online:2018-02-18 Published:2018-02-18
  • Contact: E-mail: zhangm.80@nuist.edu.cn
  • Supported by:

    This work was supported by the Natural Science Foundation of China (31200377,41575147), the Chinese Academy of Science Strategic Priority Research Program (XDA0505060208), and the PhD Discipline Foundation of Ministry of Education of China (20123228120003).

摘要: 极端高温是影响森林生态系统碳循环重要的极端天气事件之一.本研究利用千烟洲亚热带人工针叶林2003—2012年的CO2通量及常规气象数据,结合小波分析方法,明确极端高温及极端高温事件对该森林生态系统净碳吸收的影响,以及极端高温及事件发生时,不同时间尺度上环境因子对净碳吸收的控制作用.结果表明: 极端高温发生时,日最高气温在35~40 ℃时,会导致该生态系统平均日总净CO2交换量(NEE)较30~34 ℃下降51%;极端高温及极端高温事件对月及年总NEE的影响与极端高温事件发生的强度及持续时间有关,2003年强极端高温事件发生时,7、8两个月总NEE仅为-11.64 g C·m-2·(2 month)-1,较多年平均值下降了90%,使年总NEE的相对变化率达-6.7%.在极端高温及事件发生的7—8月间,气温(Ta)、饱和水汽压差(VPD)是控制NEE日变化的主要环境因子,其相干性分别可达0.97、0.95;在8、16、32 d周期上,Ta、VPD、土壤5 cm处含水量(SWC)及降水量(P)均对NEE有较强的控制作用,在32 d周期上,NEE与SWC、P的相干性超过了0.8.极端高温及事件发生时,短时间尺度上大气干旱影响该森林生态系统的净碳吸收,而长时间尺度上,大气干旱与土壤干旱共同影响该森林生态系统的净碳吸收.

Abstract: Extreme high temperature is one of important extreme weathers that impact forest ecosystem carbon cycle. In this study, applying CO2 flux and routine meteorological data measured during 2003-2012, we examined the impacts of extreme high temperature and extreme high temperature event on net carbon uptake of subtropical coniferous plantation in Qianyanzhou. Combining with wavelet analysis, we analyzed environmental controls on net carbon uptake at different temporal scales, when the extreme high temperature and extreme high temperature event happened. The results showed that mean daily cumulative NEE decreased by 51% in the days with daily maximum air temperature range between 35 ℃ and 40 ℃, compared with that in the days with the range between 30 ℃ and 34 ℃. The effects of the extreme high temperature and extreme high temperature event on monthly NEE and annual NEE related to the strength and duration of extreme high tempe-rature event. In 2003, when strong extreme high temperature event happened, the sum of monthly cumulative NEE in July and August was only -11.64 g C·m-2·(2 month)-1. The value decreased by 90%, compared with multi-year average value. At the same time, the relative variation of annual NEE reached -6.7%. In July and August, when the extreme high temperature and extreme high temperature event occurred, air temperature (Ta) and vapor press deficit (VPD) were the dominant controller for the daily variation of NEE. The coherency between NEE & Ta and NEE & VPD was 0.97 and 0.95, respectively. At 8-, 16-, and 32-day periods, Ta, VPD, soil water content at 5 cm depth (SWC), and precipitation (P) controlled NEE. The coherency between NEE & SWC and NEE & P was higher than 0.8 at monthly scale. The results indicated that atmospheric water deficit impacted NEE at short temporal scale, when the extreme high temperature and extreme high temperature event occurred, both of atmospheric water deficit and soil drought stress impacted NEE at long temporal scales in this ecosystem.