欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2019, Vol. 30 ›› Issue (8): 2813-2821.doi: 10.13287/j.1001-9332.201908.030

• • 上一篇    下一篇

生物有机肥对连作当归根际土壤细菌群落结构和根腐病的影响

王文丽*, 李娟, 赵旭   

  1. 甘肃省农业科学院土壤肥料与节水农业研究所, 兰州 730070
  • 收稿日期:2018-09-10 出版日期:2019-08-15 发布日期:2019-08-15
  • 通讯作者: * E-mail: wang_wenli@sina.com
  • 作者简介:王文丽,女,1968年生,学士.主要从事农业废弃资源肥料化利用研究.E-mail:wang_wenli@sina.com
  • 基金资助:
    国家重点研发计划项目(2016YFD0501401)和甘肃省农业生物技术研究与应用开发项目(GNSW-2014-14)

Effects of biological organic fertilizer on rhisosphere soil bacteria community and root rot diseases of continuous cropping Angelica sinensis

WANG Wen-li*, LI Juan, ZHAO Xu   

  1. Institute of Soil, Fertilizer and Water-saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China.
  • Received:2018-09-10 Online:2019-08-15 Published:2019-08-15
  • Contact: * E-mail: wang_wenli@sina.com

摘要: 研究生物有机肥料DZF-363对当归生长、根腐病的发病情况及土壤微生物群落结构和功能的影响,可为其对连作当归根际土壤环境的调节和改善提供理论依据.本研究以连作2年的当归及其根际土壤为对象,设置对照(不施农药和微生物肥料,CK)、农药(15%的阿维毒死蜱乳油+50%多菌灵可湿性粉剂,N)和生物有机肥DZF-363(DZF)处理,利用高通量测序和比色的方法,研究施用DZF-363对当归根际土壤微生物群落结构和土壤脲酶、磷酸酶活性的影响.结果表明: 施用DZF-363比对照和农药处理分别增产18.8%和6.8%.施用DZF-363使当归根腐病病情指数显著降低,对根腐病防效达52.0%;整个生育期当归根际土壤的脲酶、中性磷酸酶、碱性磷酸酶活性显著提高,苗期、生长中期及收获期脲酶活性分别提高52.4%、13.9%、10.3%,中性磷酸酶活性分别提高15.5%、10.2%、10.3%,碱性磷酸酶活性分别提高10.3%、4.4%、4.0%,酸性磷酸酶活性在当归生长中期及收获期分别提高15.6%、8.2%.放线菌门在CK、N和DZF处理中的占比分别为11.3%、10%和20%,未知的放线菌纲和芽孢杆菌纲在DZF处理中的占比显著高于CK和N处理.施用DZF-363能显著增加当归根际土壤Shannon指数,且Shannon指数和Simpson指数与当归产量呈正相关,与根腐病呈负相关.表明施用DZF-363能显著增加当归根际土壤细菌多样性,改变当归根际土壤细菌群落结构,提高根际土壤脲酶和磷酸酶活性,减轻当归根腐病的发生,显著提高当归产量.

Abstract: Understanding the effects of biological organic fertilizer DZF-363 on the growth, root rot diseases, and the structure and function of soil microbial community of Angelica sinensis could provide theoretical basis for the adjustment and improvement of soil environment in the rhizosphere of continuous cropping. Taking 2-year continuous cropping A. sinensis and its rhizosphere soil as test objects, with control (without any pesticides, micro-fertilizer, CK), pesticides groups (15% chlorpyrifos and 50% carbendazim, N), and DZF-363 (DZF) treatments, microbial community structure, and urease and phosphatase activities in rhizosphere soil were figured out by high throughput sequencing and colorimetric method. The results showed that the yield of DZF-363 group was 18.8% higher than CK and 6.8% higher than N. The root rot disease index in the DZF was reduced, with a control effectiveness of 52.0%. The activities of urease, neutral phosphatase and alkaline phosphatase in rhizosphere soil were significantly increased during the growing season, and the urease acti-vity increased by 52.4%, 13.9%, 10.3%, neutral phosphatase activity by 15.5%, 10.2%, 10.3%, alkaline phosphatase activity by 10.3%, 4.4%, 4.0% compared with CK during seedling and middle, and harvesting stages, respectively. The acid phosphatase activity increased by 15.6% and 8.2% at middle and harvesting stages, respectively. The proportion of Actinobacteria in CK, N and DZF groups was 11.3%, 10% and 20%, respectively. The proportion of unidentified Bacillibacteria and Actinobacteria was larger in DZF than in the CK and N groups. The Shannon index was significantly increased by DZF. There was positive correlation between Shannon and Simpson indices with the yield of A. sinensis, while negative correlation with the root rot disease. Therefore, the application of DZF-363 could strongly improve the diversity of soil bacteria in the rhizosphere, alter the soil bacterial community structure and rhizosphere soil urease and phosphatase activities, reduce the occurrence of root rot diseases, and thus increase the yield.