欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2019, Vol. 30 ›› Issue (10): 3419-3425.doi: 10.13287/j.1001-9332.201910.011

• 研究论文 • 上一篇    下一篇

气候变化对寒兰分布的影响及其分布格局模拟

陈衍如1, 谢慧敏1, 罗火林1,2, 杨柏云1,2, 熊冬金1*   

  1. 1南昌大学生命科学学院, 南昌 330031;
    2江西省植物资源重点实验室, 南昌 330031
  • 收稿日期:2018-11-01 出版日期:2019-10-20 发布日期:2019-10-20
  • 通讯作者: *E-mail: jxxdj@163.com
  • 作者简介:陈衍如, 男, 1994年生, 硕士研究生. 主要植物系统发育和系统发育结构研究. E-mail: 2239172247@qq.com
  • 基金资助:
    国家自然科学地方基金项目(31260485)和江西省科技支撑计划项目(20122BBF60059)资助

Impacts of climate change on the distribution of Cymbidium kanran and the simulation of distribution pattern

CHEN Yan-ru1, XIE Hui-min 1, LUO Huo-lin1,2, YANG Bo-yun1,2, XIONG Dong-jin1*   

  1. 1School of Life Science, Nanchang University, Nanchang 330031, China;
    2Jiangxi Province Key Laboratory of Plant Resources, Nanchang 330031, China
  • Received:2018-11-01 Online:2019-10-20 Published:2019-10-20
  • Contact: *E-mail: jxxdj@163.com
  • Supported by:
    This work was supported by the National Science Local Foundation of China (31260485) and the Jiangxi Science and Technology Support Project (20122BBF60059).

摘要: 通过实地调查及网上查阅得到寒兰分布数据共233个,并从世界气候网站下载19个气候因子数据,利用MaxEnt模型模拟寒兰潜在分布区,结合ArcGIS空间分析技术,模拟了寒兰不同时期分布格局,推测寒兰末次冰期和2070年分布格局.结果表明: 模型训练集的曲线下面积(AUC值)为0.957,验证集AUC值为0.953,模型预测的准确性较高.寒兰当前分布主要受最干季度降水量、年均降水量、最湿季度降水量和年均温度范围影响,其贡献率分别是50.3%、15.9%、8.4%、4.4%,总贡献率达79%.在末次冰期时代,寒兰分布区主要是武夷山、罗霄山、南岭、台湾五大山脉以及广西省北部一些丘陵.从当前到2070年,寒兰分布区域整体将缩小22.4%,其中,广西南部、云南中部及江西、福建、广东三省交界处等呈扩张趋势,而在江西东部、福建西部以及两省交界处的大部分区域呈收缩趋势.

Abstract: In this study, data of 19 climatic factors were downloaded from the World Climate website. A total of 233 Cymbidium kanran distribution data were obtained through online review and field visits. Using MaxEnt model and combined with ArcGIS spatial analysis technology, the potential distribution area and distribution pattern of C. kanran in different periods were simulated, as well as its distribution during the last glacial period and 2070. The results showed that the curve indexes (AUC) value of the model training set was 0.957, and the AUC value of the verification set was 0.953, indicating that the prediction accuracy of the model was very high. The current distribution of C. kanran was mostly affected by the driest quarter precipitation, mean annual precipitation, wettest quarter precipitation, and mean annual temperature range. The contribution rates were 50.3%, 15.9%, 8.4% and 4.4%, respectively, with the total contribution rate being 79.0%. In the last glacial period, C. kanran mainly distributed in Wuyi Mountain, Luojing Mountain, Nanling, Taiwan’s five major mountains and some hills in the northern part of Guangxi. From now to 2070, the distribution of C. kanran area will decrease by 22.4%. The southwestern part of Guangxi, the central part of Yunnan, and the junctions of Jiangxi, Fujian and Guangdong provinces will expand, while that in eastern Jiangxi, western Fujian, and the border between these two provinces will shrink.