[1] Muqaddas B, Zhou X, Lewis T, et al. Long-term frequent prescribed fire decreases surface soil carbon and nitrogen pools in a wet sclerophyll forest of southeast Queensland, Australia. Science of the Total Environment, 2015, 536: 39-47 [2] 窦华亭, 张福锁, 刘全清. 土壤中有机态氮对作物的有效性及其在推荐施肥中的作用. 中国农业大学学报, 1993, 19(3): 71-78[Dou H-T, Zhang F-S, Liu Q-Q. Availability of soil organic nitrogen and its importance in the fertilization. Journal of China Agricultural University, 1993, 19(3): 71-78] [3] 范少辉, 刘广路, 苏文会, 等. 竹林培育研究进展. 林业科学研究, 2018, 31(1): 137-144[Fan S-H, Liu G-L, Su W-H, et al. Advances in research of bamboo forest cultivation. Forest Research, 2018, 31(1): 137-144] [4] Zhou GM, Meng CF, Jiang PK, et al. Review of carbon fixation in bamboo forests in China. The Botanical Review, 2011, 77: 262-270 [5] 曹福明, 闫文德, 田大伦, 等. 桃江县毛竹林生态系统碳储量及其空间分布. 生态学报, 2017, 37(6): 2005-2013[Cao F-M, Yan W-D, Tian D-L, et al. Distribution of biomass and carbon storage in different aged stands of Moso bamboo plantations in Taojiang County, Hunan. Acta Ecologica Sinica, 2017, 37(6): 2005-2013] [6] 李翀, 周国模, 施拥军, 等. 不同经营措施对毛竹林生态系统净碳汇能力的影响. 林业科学, 2017, 53(2): 1-9[Li C, Zhou G-M, Shi Y-J, et al. Effects of different management measures on the net carbon sequestration capacity of moso bamboo forest ecosystem. Scientia Silvae Sinicae, 2017, 53(2): 1-9] [7] 官凤英, 夏明鹏, 范少辉, 等. 福建省毛竹NPP遥感估算及其时空格局研究. 西北林学院学报, 2017, 32(1): 218-223[Guan F-Y, Xia M-P, Fan S-H, et al. Remote sensing-based estimation of Phyllostachys heterocycla cv. pubescens NPP and its spatio-temporal variation analysis in Fujian. Journal of Northwest Forestry University, 2017, 32(1): 218-223] [8] 陈晓峰, 江洪, 牛晓栋, 等. 季节性高温和干旱对亚热带毛竹林碳通量的影响. 应用生态学报, 2016, 27(2): 335-344[Chen X-F, Jiang H, Niu X-D, et al. Effect of seasonal high temperature and drought on carbon flux of bamboo forest ecosystem in subtropical region. Chinese Journal of Applied Ecology, 2016, 27(2): 335-344] [9] 应雨骐, 项婷婷, 林维雷, 等. 中国亚热带5种林分凋落物层植硅体碳的封存特性. 林业科学, 2015, 51(3): 1-7[Ying Y-Q, Xiang T-T, Lin W-L, et al. Phytolith-occluded carbon in litters of different stands in the subtropics of China. Scientia Silvae Sinicae, 2015, 51(3): 1-7] [10] Shi YJ, Xu L, Zhou YF, et al. Quantifying driving factors of vegetation carbon stocks of Moso bamboo forests using machine learning algorithm combined with structural equation model. Forest Ecology and Management, 2018, 429: 406-413 [11] 赵睿宇, 李正才, 王斌, 等. 毛竹林地表覆盖年限对土壤有机碳的影响. 植物生态学报, 2017, 41(4): 418-429[Zhao R-Y, Li Z-C, Wang B, et al. Duration of mulching caused variable pools of labile organic carbon in a Phyllostachys edulis plantation. Chinese Journal of Plant Ecology, 2017, 41(4): 418-429] [12] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000[Lu R-K. Soil and Agricultural Chemi-stry Analysis. Beijing: China Agricultural Science and Technology Press, 2000] [13] Six J, Elliott ET, Paustian K, et al. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal, 1998, 62: 1367-1377 [14] Egli M, Sartori G, Mirabella A, et al. Effect of north and south exposure on organic matter in high alpine soils. Geoderma, 2009, 149: 124-136 [15] Fultz LM, Moorekucera J, Caldern F, et al. Using Fourier-transform mid-infrared spectroscopy to distinguish soil organic matter composition dynamics in aggregate fractions of two agroecosystems. Soil Science Society of America Journal, 2014, 78: 1940-1948 [16] Laudicina VA, Novara A, Barbera V, et al. Long-term tillage and cropping system effects on chemical and biochemical characteristics of soil organic matter in a Mediterranean semiarid environment. Land Degradation & Development, 2015, 26: 45-53 [17] 刘广路, 范少辉, 郭宝华, 等. 扩鞭繁殖毛竹林碳氮贮量的动态变化特征. 热带亚热带植物学报, 2013, 21(3): 211-219[Liu G-L, Fan S-H, Guo B-H, et al. Dynamic changes in carbon and nitrogen storage of Phyllostachys edulis forest with rhizome expansion. Journal of Tropical and Subtropical Botany, 2013, 21(3): 211-219] [18] Chen LC, Wang H, Yu X, et al. Recovery time of soil carbon pools of conversional Chinese fir plantations from broadleaved forests in subtropical regions, China. Science of the Total Environment, 2017, 587-588 [19] Yen TM, Lee JS. Comparing aboveground carbon sequestration between moso bamboo (Phyllostachys edulia) and china fir (Cunninghamia lanceolata) forests based on the allometric model. Forest Ecology and Management, 2011, 261: 995-1002 [20] 刘骏, 杨清培, 宋庆妮, 等. 毛竹种群向常绿阔叶林扩张的细根策略. 植物生态学报, 2013, 37(3): 230-238 [Liu J, Yang Q-P, Song Q-N, et al. Strategy of fine root expansion of Phyllostachys pubescens population into evergreen broad-leaved forest. Chinese Journal of Plant Ecology, 2013, 37(3): 230-238] [21] 刘广路, 范少辉, 漆良华, 等. 闽西北不同类型毛竹林养分分布及生物循环特征. 生态学杂志, 2010, 29(11): 2155-2161[Liu G-L, Fan S-H, Qi L-H, et al. Nutrient distribution and biological cycle characteristics in different types of Phyllostachys pubescens forest in Northwest Fujian. Chinese Journal of Ecology, 2010, 29(11): 2155-2161] [22] 李正才, 徐德应, 杨校生, 等. 7种不同林农土地利用类型残体的有机碳储量. 浙江农林大学学报, 2007, 24(5): 581-586[Li Z-C, Xu D-Y, Yang X-S, et al. Organic carbon storage in forest debris of seven vegetation cover types. Journal of Zhejiang Forestry College, 2007, 24(5): 581-586] [23] 王纪杰, 徐秋芳, 姜培坤. 毛竹凋落物对阔叶林土壤微生物群落功能多样性的影响. 林业科学, 2008, 44(9): 146-151[Wang J-J, Xu Q-F, Jiang P-K. Impacts of litter of Phyllostachys pubescens on functional biodiversity of soil microorganism communities in broad-leaved forest. Scientia Silvae Sinicae, 2008, 44(9): 146-151] [24] 杨萌, 李永夫, 李永春, 等. 集约经营对毛竹林土壤碳氮库及酶活性的影响. 应用生态学报, 2016, 27(11): 3455-3462[Yang M, Li Y-F, Li Y-C, et al. Effects of intensive management on soil C and N pools and soil enzyme activities in moso bamboo plantations. Chinese Journal of Applied Ecology, 2016, 27(11): 3455-3462] [25] Golchin A, Oades J, Skjemstad J, et al. Study of free and occluded particulate organic matter in soils by solid state 13C Cp/MAS NMR spectroscopy and scanning electron microscopy. Soil Research, 1994, 32: 285-309 [26] 刘启明, 王世杰, 朴河春, 等. 稳定碳同位素示踪农林生态转换系统中土壤有机质的迁移和赋存规律. 环境科学, 2002, 23(4): 89-92[Liu Q-M, Wang S-J, Piao H-C, et al, The dynamics rules of soil organic matter of turnover ecosystems traced by stable carbon isotopes. Environmental Science, 2002, 23(4): 89-92] [27] He Y, Chen C, Xu Z, et al. Assessing management impacts on soil organic matter quality in subtropical Australian forests using physical and chemical fractionation as well as 13C NMR spectroscopy. Soil Biology and Biochemistry, 2009, 41: 640-650 [28] Steffens M, Kolbl A, Schork E, et al. Distribution of soil organic matter between fractions and aggregate size classes in grazed semiarid steppe soil profiles. Plant and Soil, 2011, 338: 63-81 [29] Simon T, JavuRek M, Mikanova O, et al. The influence of tillage systems on soil organic matter and soil hydrophobicity. Soil and Tillage Research, 2009, 105: 44-48 [30] Capriel P. Hydrophobicity of organic matter in arable soils: Influence of management. European Journal of Soil Science, 2010, 48: 457-462 [31] Fontaine S, Barot S, Barre P, et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 2007, 450: 277-280 [32] 沈秋兰, 何冬华, 徐秋芳, 等. 阔叶林改种毛竹(Phyllostachys edulis)后土壤固氮细菌nifH基因多样性的变化. 植物营养与肥料学报, 2016, 22(3): 687-696[Shen Q-L, He D-H, Xu Q-F, et al. Variation of nifH gene diversity of soil nitrogen-fixing bacteria in moso bamboo (Phyllostachys edulis) plantation converted from broadleaf forest. Journal of Plant Nutrition and Fertilizer, 2016, 22(3): 687-696] |