[1] Turner MG, Hargrove WW, Gardner RH, et al. Effects of fire on landscape heterogeneity in Yellowstone National Park, Wyoming. Journal of Vegetation Science, 2010, 5: 731-742 [2] Obschatko ESD, Foti MP, Romn ME, et al. Global forest resources assessment 2010: Main report. FAO Forestry Paper, 2010 [3] 胡海清, 魏书精, 孙龙, 等. 气候变化、火干扰与生态系统碳循环. 干旱区地理, 2013, 36(1): 57-75 [Hu H-Q, Wei S-J, Sun L, et al. Interaction among climate change, fire disturbance and ecosystem carbon cycle. Arid Land Geography, 2013, 36(1): 57-75] [4] De Groot WJ, Flannigan MD, Cantin AS. Climate change impacts on future boreal fire regimes. Forest Ecology and Management, 2013, 294: 35-44 [5] Chuvieco E, Mouillot F, van der Werf GR, et al. Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sensing of Environment, 2019, 225: 45-64 [6] 杨伟, 姜晓丽. 森林火灾火烧迹地遥感信息提取及应用. 林业科学, 2018, 54(5): 138-145 [Yang W, Jiang X-L. Review on remote sensing information extraction and application of the burned forest areas. Scientia Silvae Sinicae, 2018, 54(5): 138-145] [7] 覃先林, 陈小中, 钟祥清, 等. 我国森林火灾预警监测技术体系发展思考. 林业资源管理, 2015(6): 45-48 [Qin X-L, Chen X-Z, Zhong X-Q, et al. Development of forest fire early warning and monitoring technique system in China. Forest Resources Management, 2015(6): 45-48] [8] Giglio L, Randerson JT, Werf GRVD. Analysis of daily, monthly, and annual burned area using the fourth-genera-tion global fire emissions database (GFED4). Journal of Geophysical Research Biogeosciences, 2013, 118: 317-328 [9] Chuvieco E, Yue C, Heil A, et al. A new global burned area product for climate assessment of fire impacts. Global Ecology and Biogeography, 2016, 25: 619-629 [10] Fang L, Crocker E, Yang J, et al. Competition and burn severity determine post-fire sapling recovery in a nationa-lly protected boreal forest of China: An analysis from very high-resolution satellite imagery. Remote Sensing, 2019, 11: 603 [11] Giglio L, Boschetti L, Roy DP, et al. The collection 6 MODIS burned area mapping algorithm and product. Remote Sensing of Environment, 2018, 217: 72-85 [12] Long T, Zhang Z, He G, et al. 30 m resolution global annual burned area mapping based on Landsat images and Google Earth Engine. Remote Sensing, 2019, 11: 489 [13] 田晓瑞, 舒立福, 赵凤君, 等. 中国主要生态地理区的林火动态特征分析. 林业科学, 2015, 51(9): 71-77 [Tian X-R, Shu L-F, Zhao F-J, et al. Dynamic characteristics of forest fires in the main ecological geographic districts of China. Scientia Silvae Sinicae, 2015, 51(9): 71-77] [14] Yi K, Bao Y, Zhang J. Spatial distribution and temporal variability of open fire in China. International Journal of Wildland Fire, 2017, 26: 122-135 [15] Hanes CC, Wang X, Jain P, et al. Fire regime changes in Canada over the last half century. Canadian Journal of Forest Research, 2018, 49: 256-269 [16] Vadrevu KL, Kristofer G, Louis S, et al. Trends in vegetation fires in South and Southeast Asian Countries. Scientific Reports, 2019, 9: 7422 [17] 胡海清, 苏志杰, 魏书精, 等. 利用不同时相遥感影像估算大兴安岭北部火干扰后NPP. 森林工程, 2013, 29(2): 1-7 [Hu H-Q, Su Z-J, Wei S-J, et al. Estimation of net primary productivity of northern great Xing’an Mountain after fire disturbance using multi-temporal remote seining images. Forest Engineering, 2013, 29(2): 1-7] [18] 孙龙, 王千雪, 魏书精, 等. 气候变化背景下我国森林火灾灾害的响应特征及展望. 灾害学, 2014, 29(1): 12-17 [Sun L, Wang Q-X, Wei S-J, et al. Response characteristics and prospect of forest fire disasters in the context of climate change in China. Journal of Catastrophology, 2014, 29(1): 12-17] [19] 国家林业局. 第八次全国森林资源清查结果. 林业资源管理, 2014(1): 1-2 [State Forestry Administration. The results of the 8th national forest inventories. Forest Resources Management, 2014(1): 1-2] [20] 田晓瑞, 刘斌. 林火动态研究与林火管理. 世界林业研究, 2011, 24(1): 46-50 [Tian X-R, Liu B. Research achievements of fire regime and fire management. World Forestry Research, 2011, 24(1): 46-50] [21] 翟洪波, 魏晓霞, 赵鹏武, 等. 中国森林防火形势分析林产工业, 2018, 45(4): 45-50 [Zhai H-B, Wei X-X, Zhao P-W, et al. The situation analysis of forest fire control in China. China Forest Products Industry, 2018, 45(4): 45-50] [22] 田晓瑞, 赵凤君, 舒立福, 等. 1961—2010年中国植被区的气候与林火动态变化. 应用生态学报, 2014, 25(11): 3279-3286 [Tian X-R, Zhao F-J, Shu L-F, et al. Changes of climate and fire dynamic in China vegetation zone during 1961-2010. Chinese Journal of Applied Ecology, 2014, 25(11): 3279-3286] [23] Fornacca D, Ren G, Xiao W. Performance of three MODIS fire products (MCD45A1, MCD64A1, MCD14ML), and ESA fire_CCI in a mountainous area of Northwest Yunnan, China, characterized by frequent small fires. Remote Sensing, 2017, 9: 1131 [24] Giglio L, Loboda T, Roy DP, et al. An active-fire based burned area mapping algorithm for the MODIS sensor. Remote Sensing of Environment, 2009, 113: 408-420 [25] Chuvieco E, Lizundia-Loiola J, Pettinari ML, et al. Generation and analysis of a new global burned area product based on MODIS 250 m reflectance bands and thermal anomalies. Earth System Science Data, 2018, 10: 2015-2031 [26] Hansen M, Potapov P, Margono B, et al. High-resolution global maps of 21st-century forest cover change. Science, 2014, 342: 850-853 [27] Potapov P, Hansen MC, Stehman SV, et al. Combining MODIS and Landsat imagery to estimate and map boreal forest cover loss. Remote Sensing of Environment, 2008, 112: 3708-3719 [28] 中华人民共和国国务院. 中华人民共和国森林防火条例.中华人民共和国国务院令第541号. 北京: 中华人民共和国国务院, 2008 [State Council of the People’s Republic of China. Regulations of the People’s Republic of China on Forest Fire Prevention. Order of the State Council of the People’s Republic of China No. 541. Beijing: State Council of the People’s Republic of China, 2008] [29] 袁丽华, 蒋卫国, 申文明, 等. 2000—2010年黄河流域植被覆盖的时空变化. 生态学报, 2013, 33(24): 7798-7806 [Yuan L-H, Jiang W-G, Shen W-M, et al. The spatio-temporal variations of vegetation cover in the Yellow River Basin from 2000 to 2010. Acta Ecologica Sinica, 2013, 33(24): 7798-7806] [30] Giglio L, Schroeder W, Justice CO. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sensing of Environment, 2016, 178: 31-41 |