[1] |
Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature, 2003, 421: 37-41
|
[2] |
Peuelas J, Rutishauser T, Filella I. Phenology feedbacks on climate change. Science, 2009, 324: 887-888
|
[3] |
IPCC. An IPCC special report on the impacts of global warming of 1.5 ℃ above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty[EB/OL]. (2018-10) [2019-07-30]. https://www.ipcc.ch/sr15/
|
[4] |
Liu Q, Piao S, Fu YH, et al. Climatic warming increases spatial synchrony in spring vegetation phenology across the Northern Hemisphere. Geophysical Research Letters, 2019, 46: 1641-1650
|
[5] |
Buitenwerf R, Rose L, Higgins SI. Three decades of multi-dimensional change in global leaf phenology. Nature Climate Change, 2015, 5: 364-368
|
[6] |
潘衍庆. 中国热带作物栽培学. 北京: 农业出版社, 1998 [Pan Y-Q. Tropical Crop Cultivation in China. Beijing: Agriculture Press, 1998]
|
[7] |
Golbon R, Cotter M, Sauerborn J. Climate change impact assessment on the potential rubber cultivating area in the Greater Mekong Subregion. Environmental Research Letters, 2018, 13: 084002
|
[8] |
Fan H, Fu X, Zhang Z, et al. Phenology-based vegetation index differencing for mapping of rubber plantations using Landsat OLI data. Remote Sensing, 2015, 7: 6041-6058
|
[9] |
华南热带作物学院. 橡胶栽培学(第二版). 北京: 农业出版社, 1991 [South China Academy of Tropical Crops. Rubber Cultivation. 2nd Ed. Beijing: Agriculture Press, 1991]
|
[10] |
Pastor-Guzman J, Dash J, Atkinson PM. Remote sen-sing of mangrove forest phenology and its environmental drivers. Remote Sensing of Environment, 2018, 205: 71-84
|
[11] |
Ceglar A, van der Wijngaart R, de Wit A, et al. Improving WOFOST model to simulate winter wheat phenology in Europe: Evaluation and effects on yield. Agricultural Systems, 2019, 168: 168-180
|
[12] |
Fraga H, Garcia de Cortazar Atauri I, Malheiro AC, et al. Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Global Change Biology, 2016, 22: 3774-3788
|
[13] |
Zhao C, Piao S, Wang X, et al. Plausible rice yield losses under future climate warming. Nature Plants, 2016, 3: 16202
|
[14] |
Asseng S, Martre P, Maiorano A, et al. Climate change impact and adaptation for wheat protein. Global Change Biology, 2019, 25: 155-173
|
[15] |
Golbon R, Ogutu JO, Cotter M, et al. Rubber yield prediction by meteorological conditions using mixed models and multi-model inference techniques. International Journal of Biometeorology, 2015, 59: 1747-1759
|
[16] |
谢贵水, 陈帮乾, 王纪坤,等. 橡胶树光合与干物质积累模拟模型研究. 中国农学通报, 2010, 26(6): 317-323 [Xie G-S, Chen B-Q, Wang J-K, et al. Stu-dies on the simulation model of photosynthesis and dry matter accumulation for rubber tree. Chinese Agricultural Science Bulletin, 2010, 26(6): 317-323]
|
[17] |
王春乙. 海南气候. 北京: 气象出版社, 2014 [Wang C-Y. Hainan Climate. Beijing: China Meteorological Press, 2014]
|
[18] |
姜会飞. 农业气象观测与数据分析. 北京: 科学出版社, 2009 [Jiang H-F. Agrometeorological Observation and Data Analysis. Beijing: Science Press, 2009]
|
[19] |
He D, Wang E, Wang J, et al. Data requirement for effective calibration of process-based crop models. Agricultural and Forest Meteorology, 2017, 234-235: 136-148
|
[20] |
Gao L, Jin Z, Huang Y, et al. Rice clock model: A computer model to simulate rice development. Agricul-tural and Forest Meteorology, 1992, 60: 1-16
|
[21] |
郑国清, 高亮之. 玉米发育期动态模拟模型. 江苏农业学报, 2000, 16(1): 15-21 [Zheng G-Q, Gao L-Z. Simulation model of maize phenology. Jiangsu Journal of Agricultural Sciences, 2000, 16(1): 15-21]
|
[22] |
陈潇, 冯利平, 彭明喜, 等. 钟模型建立甘蔗发育期模拟模型. 中国农业气象, 2019, 40(3): 186-194 [Chen X, Feng L-P, Peng M-X, et al. Establishment of sugarcane development simulation model based on clock model method. Chinese Journal of Agrometeorology, 2019, 40(3): 186-194]
|
[23] |
Priyadarshan PM. Biology of Hevea Rubber. 2nd Ed. Cham, Switzerland: Springer, 2017
|
[24] |
Zhai DL, Yu H, Chen SC, et al. Responses of rubber leaf phenology to climatic variations in Southwest China. International Journal of Biometeorology, 2019, 63: 607-616
|
[25] |
冯利平, 高亮之, 金庆之, 等. 小麦发育期动态模拟模型的研究. 作物学报, 1997, 23(4): 418-424 [Feng L-P, Gao L-Z, Jin Q-Z, et al. Studies on the simulation model for wheat phenology. Acta Agronomica Sinica, 1997, 23(4): 418-424]
|
[26] |
Hoeting JA, Madigan D, Raftery AE, et al. Bayesian model averaging: A tutorial. Statistical Science, 1999, 14: 382-417
|
[27] |
Wang W, Ding Y, Shao Q, et al. Bayesian multi-model projection of irrigation requirement and water use efficiency in three typical rice plantation region of China based on CMIP5. Agricultural and Forest Meteorology, 2017, 232: 89-105
|
[28] |
Gneiting T, Raftery AE. Weather forecasting with ensemble methods. Science, 2005, 310: 248-249
|
[29] |
农牧渔业部热带作物区划办公室. 中国热带作物种植业区划. 广州: 广东科技出版社, 1989 [Tropical Crop Division Office of the Ministry of Agriculture, Animal Husbandry and Fisheries. Division of Tropical Crop Planting in China. Guangzhou: Guangdong Science and Technology Press, 1989]
|
[30] |
Reyer CP, Leuzinger S, Rammig A, et al. A plant’s perspective of extremes: Terrestrial plant responses to changing climatic variability. Global Change Biology, 2013, 19: 75-89
|
[31] |
Workie TG, Debella HJ. Climate change and its effects on vegetation phenology across ecoregions of Ethiopia. Global Ecology and Conservation, 2018, 13: e00366
|
[32] |
赖欣, 范广洲, 刘雅星. 中国植物物候变化预测. 干旱气象, 2011, 29(3): 269-275 [Lai X, Fan G-Z, Liu Y-X. Prediction about future plant phenology variation in China. Journal of Arid Meteorolgy, 2011, 29(3): 269-275]
|
[33] |
Cotter M, Asch F, Hilger T, et al. Measuring leaf area index in rubber plantations: A challenge. Ecological Indicators, 2017, 82: 357-366
|
[34] |
李宁, 白蕤, 李玮, 等. 未来气候变化背景下我国橡胶树寒害事件的变化特征. 气候变化研究进展, 2018, 14(4): 402-410 [Li N, Bai R, Li W, et al. Changes of chilling injury events on China’s rubber tree under future climate change. Climate Change Research, 2018, 14(4): 402-410]
|
[35] |
白蕤, 李宁, 陈汇林, 等. 大气环流指数和地面气象要素对海南省橡胶树白粉病的影响. 植物保护学报, 2019, 46(4): 770-778 [Bai R, Li N, Chen H-L, et al. Influences of atmospheric circulation index and surface meteorological elements on the rubber tree powdery mildew in Hainan Province. Journal of Plant Protection, 2019, 46(4): 770-778]
|
[36] |
刘少军, 周广胜, 房世波, 等. 未来气候变化对中国天然橡胶种植气候适宜区的影响. 应用生态学报, 2015, 26(7): 2083-2090 [Liu S-J, Zhou G-S, Fang S-B, et al. Effects of future climate change on climatic suitability of rubber plantation in China. Chinese Journal of Applied Ecology, 2015, 26(7): 2083-2090]
|
[37] |
王安乾, 苏布达, 王艳君, 等. 全球升温1.5 ℃与2.0 ℃情景下中国极端低温事件变化与耕地暴露度研究. 气象学报, 2017, 75(3): 415-428 [Wang A-Q, Su B-D, Wang Y-J, et al. Variation of the extreme low-temperature events and farmland exposure under global warming of 1.5 ℃ and 2.0 ℃. Acta Meteorologica Sinica, 2017, 75(3): 415-428]
|
[38] |
Lin Y, Zhang Y, Zhao W, et al. Pattern and driving factor of intense defoliation of rubber plantations in SW China. Ecological Indicators, 2018, 94: 104-116
|
[39] |
Brown PT, Caldeira K. Greater future global warming inferred from Earth’s recent energy budget. Nature, 2017, 552: 45-50
|
[40] |
Morin X, Lechowicz MJ, Augspurger C, et al. Leaf phenology in 22 North American tree species during the 21st century. Global Change Biology, 2009, 15: 961-975
|
[41] |
Morin X, Roy J, Sonie L, et al. Changes in leaf pheno-logy of three European oak species in response to experimental climate change. New Phytologist, 2010, 186: 900-910
|
[42] |
Sanz-Perez V, Castro-Diez P, Valladares F. Differential and interactive effects of temperature and photoperiod on budburst and carbon reserves in two co-occurring Mediterranean oaks. Plant Biology, 2009, 11: 142-151
|
[43] |
Chuine I, Morin X, Bugmann H. Warming, photope-riods, and tree phenology. Science, 2010, 329: 277-278
|
[44] |
Krner C, Basler D. Phenology under global warming. Science, 2010, 327: 1461-1462
|
[45] |
Richardson AD, Keenan TF, Migliavacca M, et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology, 2013, 169: 156-173
|