[1] |
Yi Y, Huang W, Ge Y. Exopolysaccharide: A novel important factor in the microbial dissolution of tricalcium phosphate. World Journal of Microbiology and Biotechnology, 2008, 24: 1059-1065
|
[2] |
Bi YX, Zhou P, Li SJ, et al. Interspecific interactions contribute to higher forage yield and are affected by phosphorus application in a fully-mixed perennial legume and grass intercropping system. Field Crops Research, 2019, 244: e107636, https://doi.org/10.1016/j.fcr.2019.107636
|
[3] |
李渝, 刘彦伶, 张雅蓉, 等. 长期施肥条件下西南黄壤旱地有效磷对磷盈亏的响应. 应用生态学报, 2016, 27(7): 2321-2328 [Li Y, Liu Y-L, Zhang Y-R, et al. Response of olsen-P to P balance in yellow soil upland of southwestern China under longterm fertilization. Chinese Journal of Applied Ecology, 2016, 27(7): 2321-2328]
|
[4] |
张子璐, 刘峰, 侯庭钰. 我国稻田氮磷流失现状及影响因素研究进展. 应用生态学报, 2019, 30(10): 3292-3302 [Zhang Z-L, Liu F, Hou T-Y. Current status on nitrogen and phosphorus losses and related factors in Chinese paddy fields: A review. Chinese Journal of Applied Ecology, 2019, 30(10): 3292-3302]
|
[5] |
Melissa MA, Kim DS. Plant- and microbial-based mecha-nisms to improve the agronomic effectiveness of phosphate rock: A review. Anais da Academia Brasileira de Ciências, 2006, 78: 791-807
|
[6] |
Taciana SDC, Moreira FS, Cabral BV, et al. Phosphorus recovery from phosphate rocks using phosphate-solubili-zing bacteria. Geomicrobiology Journal, 2019, 36: 195-203
|
[7] |
van der Bom FJT, McLaren TI, Doolette AL, et al. Influence of long-term phosphorus fertilisation history on the availability and chemical nature of soil phosphorus. Geoderma, 2019, 355: e113909, https://doi.org/10.1016/j.geoderma.2019.113909
|
[8] |
Sarikhani MR, Khoshru B, Oustan S. Efficiency of some bacterial strains in potassium release from mica and phosphate solubilization under in vitro conditions. Geomicrobiology Journal, 2016, 33: 832-838
|
[9] |
Hamdali H, Bouizgarne B, Hafidi M, et al. Screening for rock phosphate solubilizing actinomycetes from Moroccan phosphate mines. Applied Soil Ecology, 2008, 38: 12-19
|
[10] |
Chen YP, Rekha PD, Arun AB, et al. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology, 2006, 34: 33-41
|
[11] |
Shi XK, Ma JJ, Liu LJ. Effects of phosphate-solubilizing bacteria application on soil phosphorus availability in coal mining subsidence area in Shanxi. Journal of Plant Interactions, 2017, 12: 137-142
|
[12] |
张素, 袁洪威, 李祝, 等. 黑曲霉超临界萃取物抑制链格孢作用机制的初步研究. 植物保护, 2019, 45(2): 57-63 [Zhang S, Yuan H-W, Li Z, et al. Preliminary studies on the antifungal mechanism of supercritical extraction from Aspergillus niger against Alternaria alternate. Plant Protection, 2019, 45(2): 57-63]
|
[13] |
Hill WJ, Hunter WG. A review of response surface methodology: A literature review. Technometrics, 1966, 8: 571-590
|
[14] |
许光辉, 陈洪元. 土壤微生物分析方法手册. 北京: 农业出版社, 1986: 246-248 [Xu G-H, Chen H-Y. Manual of Soil Microbial Analysis Methods. Beijing: China Agriculture Press, 1986: 246-248]
|
[15] |
袁洪威, 陈湖芳, 高东民, 等. 分光光度法测定黑曲霉孢子浓度的研究. 中国酿造, 2017, 36(4): 122-126 [Yuan H-W, Chen H-F, Gao D-M, et al. Determination of Aspergillus niger spores concentration by spectrophotometry. China Brewing, 2017, 36(4): 122-126]
|
[16] |
Murphy J, Riley JP. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 1962, 27: 31-36
|
[17] |
赵小蓉, 林启美, 李保国. C、N源及C/N对微生物溶磷的影响. 植物营养与肥料学报, 2002, 8(2): 197-204 [Zhao X-R, Lin Q-M, Li B-G. Effect of C, N sources and C/N ratio on the solubilization of rock phosphate by some microorganisms. Plant Nutrition and Fertilizer Sciences, 2002, 8(2): 197-204]
|
[18] |
王雪, 刘颖, 辛雨, 等. 无机解磷真菌A2的分离鉴定及解磷条件的响应面优化. 曲阜师范大学学报:自然科学版, 2016, 42(4): 73-78 [Wang X, Liu Y, Xin Y, et al. Screening and identification of phosphate-solubilizing fungil strain A2 and response surface optimization of phosphate-solubilizing conditions. Journal of Qufu Normal University: Natural Science, 2016, 42(4): 73-78]
|
[19] |
Ogbo FC. Conversion of cassava wastes for biofertilizer production using phosphate solubilizing fungi. Bioresource Technology, 2010, 101: 4120-4124
|
[20] |
薛冬, 黄向东, 杨瑞先, 等. 牡丹根际溶磷放线菌的筛选及其溶磷特性. 应用生态学报, 2018, 29(5): 1645-1652 [Xue D, Huang X-D, Yang R-X, et al. Screening and phosphate-solubilizing characteristics of phosphate-solubilizing actinomycetes in rhizosphere of tree peony. Chinese Journal of Applied Ecology, 2018, 29(5): 1645-1652]
|
[21] |
赵小蓉, 林启美, 李保国. 溶磷菌对4种难溶性磷酸盐溶解能力的初步研究. 微生物学报, 2002, 42(2): 236-241 [Zhao X-R, Lin Q-M, Li B-G. The solubilization of four insoluble phosphates by some microorga-nisms. Acta Microbiologica Sinica, 2002, 42(2): 236-241]
|
[22] |
李豆豆, 尚双华, 韩巍, 等. 一株高效解磷真菌新菌株的筛选鉴定及解磷特性. 应用生态学报, 2019, 30(7): 2384-2392 [Li D-D, Shang S-H, Han W, et al. Screening, identification, and phosphate solubilizing characteristics of a new efficient phosphate solubilizing fungus. Chinese Journal of Applied Ecology, 2019, 30(7): 2384-2392]
|
[23] |
Cerezine PC, Nahas E, Banzatto DA. Soluble phosphate accumulation by Aspergillus niger from fluorapatite. Applied Microbiology and Biotechnology, 1988, 29: 501-505
|
[24] |
王俊娟, 阎爱华, 王薇, 等. 铁尾矿区油松根际溶磷泛菌D2的筛选鉴定及溶磷特性. 应用生态学报, 2016, 27(11): 3705-3711 [Wang J-J, Yan A-H, Wang W, et al. Screening, identification and phosphate-solubilizing characteristics of phosphate-solubilizing bacteria strain D2 (Pantoea sp.) in rhizosphere of Pinus tabuliformis in iron tailings yard. Chinese Journal of Applied Ecology, 2016, 27(11): 3705-3711]
|
[25] |
吴安琪, 张扬, 万松泽, 等. 一株金黄蓝状菌解磷特性及其对毛竹的促生效应. 应用生态学报, 2019, 30(1): 173-179 [Wu A-Q, Zhang Y, Wan S-Z, et al. Phosphate solubilizing characteristics of Talaromyces aurantiacus and its growth-promoting effect on Phyllostachys edulis seedlings. Chinese Journal of Applied Ecology, 2019, 30(1): 173-179]
|
[26] |
渠露露, 彭长连, 李淑彬. 一株溶植酸磷类芽孢杆菌的分离筛选及对水稻幼苗的促生作用. 应用生态学报, 2020, 31(1): 326-332 [Qu L-L, Peng C-L, Li S-B. Isolation and screening of a phytate phosphate-solubilizing Paenibacillus sp. and its growth-promoting effect on rice seeding. Chinese Journal of Applied Ecology, 2020, 31(1): 326-332]
|
[27] |
Rinu K, Pandey A. Temperature-dependent phosphate solubilization by cold- and pH-tolerant species of Aspergillus isolated from Himalayan soil. Mycoscience, 2010, 51: 263-271
|
[28] |
Vassilev N, Vassileva M, Bravo V, et al. Simultaneous phytase production and rock phosphate solubilization by Aspergillus niger grown on dry olive wastes. Industrial Crops and Products, 2007, 26: 332-336
|
[29] |
孟会生, 洪坚平, 杨毅, 等. 配施磷细菌肥对复垦土壤细菌多样性及磷有效性的影响. 应用生态学报, 2016, 27(9): 3016-3022 [Meng H-S, Hong J-P, Yang Y, et al. Effect of applying phosphorus bacteria fertilizer on bacterial diversity and phosphorus availability in reclaimed soil. Chinese Journal of Applied Ecology, 2016, 27(9): 3016-3022]
|
[30] |
李海云, 姚拓, 张榕, 等. 红三叶根际溶磷菌的筛选与培养基优化. 草业学报, 2019, 28(1): 170-179 [Li H-Y, Yao T, Zhang R, et al. Isolation and screening of phosphate-solubilizing bacteria from the rhizosphere of Trifolium pratense and culture medium optimization. Acta Prataculturae Sinica, 2019, 28(1): 170-179]
|