应用生态学报 ›› 2021, Vol. 32 ›› Issue (2): 750-762.doi: 10.13287/j.1001-9332.202102.031
李莹莹1,3, 马玉欣2, 朱国平1,3,4,5*
收稿日期:
2020-05-26
接受日期:
2020-10-27
出版日期:
2021-02-15
发布日期:
2021-08-15
通讯作者:
*E-mail: gpzhu@shou.edu.cn
作者简介:
李莹莹, 女, 1995年生, 硕士研究生. 主要从事海洋生物学研究. E-mail: li-yingy@qq.com
基金资助:
LI Ying-ying1,3, MA Yu-xin2, ZHU Guo-ping1,3,4,5*
Received:
2020-05-26
Accepted:
2020-10-27
Online:
2021-02-15
Published:
2021-08-15
Contact:
*E-mail: gpzhu@shou.edu.cn
Supported by:
摘要: 尽管南极被认为是远离人类污染的净土,但近年来不断发现有机氯农药、多氯联苯、多溴联苯醚和全/多氟化合物等传统和“新型”持久性有机污染物(POPs)存在于南极的非生物及生物环境中,由此引发了全球各国对南极生态系统的不断关注。POPs性质稳定,能够久存于环境中,并具有毒性,易富集于生物体内并产生一定的健康风险。为了解南极和南大洋持久性有机污染物的生物地球化学过程及其对生物种群和生态系统产生的影响,本文以南大洋典型食物链为主线并结合南极海洋生物生活习性,综述了近年来国内外学者对南极海洋食物链不同营养级生物体内POPs的研究现状,并对南极海洋生态系统POPs研究前沿和热点提出了展望。研究显示,南极地区是世界上污染程度最低的地区,但过去几十年有关南极海洋生物中POPs的类型不断增加,表明该地区受到地区内/外活动的影响日益增加。零散的研究数据以及各异的技术方法使得目前仍无法阐析POPs沿食物链传递的机制。有关南极海洋生态系统POPs动态的长期监测与评估计划亟待建立。
李莹莹, 马玉欣, 朱国平. 南极海洋生物持久性有机污染物:水平、传递与风险评价[J]. 应用生态学报, 2021, 32(2): 750-762.
LI Ying-ying, MA Yu-xin, ZHU Guo-ping. Persistent organic pollution in Antarctic marine biota: Level, transport and risk assessment[J]. Chinese Journal of Applied Ecology, 2021, 32(2): 750-762.
[1] Bargagli R. Environmental contamination in Antarctic ecosystems. Science of the Total Environment, 2008, 400: 212-226 [2] Risebrough RW, Rieche P, Peakall DB, et al. Polychlorinated biphenyls in the global ecosystem. Nature 1968, 220: 1098-1102 [3] Risebrough RW, Walker W, Schmidt TT, et al. Transfer of chlorinated biphenyls to Antarctica. Nature, 1976, 264: 738-739 [4] 郑明辉. 持久性有机污染物研究进展. 中国科学: 化学, 2013, 43(3): 7-8 [Zheng M-H. Research progress of persistent organic pollutants. Science in China: Chemistry, 2013, 43(3): 7-8] [5] Kucklick JR, Hinckley DA, Bidleman TF. Determination of Henry’s law constants for hexachlorocyclohexanes in distilled water and artificial seawater as a function of temperature. Marine Chemistry, 1991, 34: 197-209 [6] Giesy JP, Kannan K. Perfluorochemical surfactants in the environment. Environmental Science and Technology, 2002, 36: 146-152 [7] Bengtson NS. Persistent organic pollutants in Antarctica: Current and future research priorities. Journal of Environmental Monitoring, 2011, 13: 497-504 [8] 王东利, 张晓鸣, 刘玉敏. 持久性有机污染物的环境行为及对人体健康的危害. 环境卫生学杂志, 2003, 30(3): 169-173 [Wang D-L, Zhang X-M, Liu Y-M. Environmental behavior of persistent organic pollutants and their harm to human health. Environmental Hygiene, 2003, 30(3): 169-173] [9] Casal P, Casas G, Vila-Costa M, et al. Snow amplification of persistent organic pollutants at coastal Antarc-tica. Environmental Science and Technology, 2019, 53: 8872-8882 [10] Galbán-Malagón C, Berrojalbiz N, Ojeda MJ, et al. The oceanic biological pump modulates the atmospheric transport of persistent organic pollutants to the Arctic. Nature Communications, 2012, 3: 862 [11] SÖdergren A. Uptake and accumulation of 14C DDT by Chlorella sp. (Chlorophyceae). Oikos, 1968, 19: 126-138 [12] Kricher JC, Urey JC, Boylan JM. Bioconcentration of four pure PCB isomers by Chlorella pyrenoidosa. Bulletin of Environmental Contamination and Toxicology, 1976, 16: 81-85 [13] Lederman TC, Rhee GY. Bioconcentration of a hexachlorobiphenyl in great lakes planktonic algae. Canadian Journal of Fisheries and Aquatic Sciences, 1982, 39: 380-387 [14] Joiris CR, Overloop, William. PCBs and organochlorine pesticides in phytoplankton and zooplankton in the Indian sector of the Southern ocean. Antarctic Science, 1991, 3: 371-377 [15] Cai MG, Liu MY, Hong QQ, et al. Fate of polycyclic aromatic hydrocarbons in seawater from the Western Pacific to the Southern Ocean (17.5° N to 69.2° S) and their inventories on the Antarctic shelf. Environmental Science and Technology, 2016, 50: 9161-9168 [16] Goerke H, Weber K, Bornemann H, et al. Increasing levels and biomagnification of persistent organic pollutants (POPs) in Antarctic biota. Marine Pollution Bulletin, 2004, 48: 295-302 [17] Kumar KS, Kannan K, Corsolini S, et al. Polychlorina-ted dibenzo-p-dioxins, dibenzofurans and polychlorinated biphenyls in polar bear, penguin and south polar skua. Environmental Pollution, 2002, 119: 151-161 [18] Corsolini S, Romeo T, Ademollo N, et al. POPs in key species of marine Antarctic ecosystem. Microchemical Journal, 2002, 73: 187-193 [19] Galbán-Malagón CJ, Hernán G, Abad E, et al. Persistent organic pollutants in krill from the Bellingshausen, South Scotia, and Weddell Seas. Science of the Total Environment, 2017, 610-611: 1487-1495 [20] Goutte A, Chevreuil M, Alliot F, et al. Persistent organic pollutants in benthic and pelagic organisms off Adélie Land, Antarctica. Marine Pollution Bulletin, 2013, 77: 82-89 [21] Corsolini S, Ademollo N, Romeo T, et al. Persistent organic pollutants in some species of a Ross Sea pelagic trophic web. Antarctic Science, 2003, 15: 95-104 [22] Subramanian BR, Tanabe S, Hidaka H, et al. DDTs and OCB isomers and congeners in Antarctic fish. Archives of Environmental Contamination and Toxicology, 1983, 12: 621-626 [23] Lana NB, Berton P, Covaci A, et al. Fingerprint of persistent organic pollutants in tissues of Antarctic notothenioid fish. Science of the Total Environment, 2014, 499: 89-98 [24] Strobel A, Schmid P, Burkhardt-Holm P, et al. Persistent organic pollutants in red- and white-blooded High-Antarctic notothenioid fish from the remote Weddell Sea. Chemosphere, 2018, 193: 213-222 [25] Strobel A, Schmid P, Segner H, et al. Persistent organic pollutants in tissues of the white-blooded Antarctic fish Champsocephalus gunnari and Chaenocephalus aceratus. Chemosphere, 2016, 161: 555-562 [26] Weber K, Goerke H. Persistent organic pollutants (POPs) in Antarctic fish: Levels, patterns, changes. Chemosphere, 2003, 53: 667-678 [27] Borghesi N, Corsolini S, Leonards P, et al. Polybrominated diphenyl ether contamination levels in fish from the Antarctic and the Mediterranean Sea. Chemosphere, 2009, 77: 693-698 [28] Focardi S, Lari L, Marsili L. PCB congeners, DDTs and hexachlorobenzene in Antarctic fish from Terra Nova Bay (Ross Sea). Antarctic Science, 1992, 4: 151-154 [29] Beltcheva M, Metcheva R, Peneva V, et al. Heavy metals in Antarctic notothenioid fish from south bay, Livingston Island, South Shetlands (Antarctica). Biological Trace Element Research, 2011, 141: 150-158 [30] Sladen WJL, Menzie CM, Reichel WL. DDT residues in Adelie penguins and a crabeater seal from Antarctica. Nature, 1966, 210: 670-673 [31] 张海生, 王自磐, 卢冰, 等. 南极大型动物粪土层和蛋卵中有机氯污染物分布特征及生态学意义. 中国科学: 地球科学, 2006, 36(12): 1111-1121 [Zhang H-S, Wang Z-P, Lu B, et al. Distribution characteristics and ecological significance of organochlorine pollutants in dung and eggs of Antarctic macrofauna. Science China Earth Sciences, 2006, 36(12): 1111-1121] [32] 卢冰, 王自磐, 朱纯, 等. 南极食物链顶端海鸟卵中PCBs和OCPs积累水平及其全球意义. 生态学报, 2005, 25(9): 2440-2445 [Lu B, Wang Z-P, Zhu C, et al. Accumulation levels of PCBs and OCPs in seabird eggs at the apex of the Antarctic food chain and their global implications. Acta Ecologica Sinica, 2005, 25(9): 2440-2445] [33] 石超英, 孙维萍, 卢冰, 等. 南极企鹅粪土沉积柱样、蛋卵中OCPs、PCBs含量分布及其环境意义. 极地研究, 2008, 20(3): 240-247 [Shi C-Y, Sun W-P, Lu B, et al. Distribution and environmental significance of OCPs and PCBs contents in egg and dung sediment of Antarctic penguins. Polar Research, 2008, 20(3): 240-247] [34] 冯朝军, 于培松, 卢冰, 等. 南极阿德雷岛企鹅机体组织、蛋卵和粪土中PCBs和OCPs的分布. 海洋环境科学, 2010, 29(3): 308-313 [Feng C-J, Yu P-S, Lu B, et al. Distribution of PCBs and OCPs in body tissues, eggs and dung of penguins on Adelay Island, Antarctica. Marine Environmental Science, 2010, 29(3): 308-313] [35] Mello FV, Roscales J, Guida Y, et al. Relationship between legacy, and emerging organic pollutants in Antarctic seabirds and their foraging ecology as shown by delta 13C and delta 15N. Science of the Total Environment, 2016, 573: 1380-1389 [36] Mwangi JK, Lee WJ, Wang LC, et al. Persistent orga-nic pollutants in the Antarctic coastal environment and their bioaccumulation in penguins. Environmental Pollution, 2016, 216: 924-934 [37] Rudolph I, Chiang G, Galbán-Malagón, et al. Persistent organic pollutants and porphyrins biomarkers in penguin faeces from Kopaitic Island and Antarctic Penin-sula. Science of the Total Environment, 2016, 573: 1390-1396 [38] Montone RC, Taniguchi S, Colabuono FI, et al. Persistent organic pollutants and polycyclic aromatic hydrocarbons in penguins of the genus Pygoscelis in Admiralty Bay: An Antarctic specially managed area. Marine Pollution Bulletin, 2016, 106: 377-382 [39] Taniguchi S, Montone RC, Bícego MC, et al. Chlorinated pesticides, polychlorinated biphenyls and polycyclic aromatic hydrocarbons in the fat tissue of seabirds from King George Island, Antarctica. Marine Pollution Bulletin, 2008, 58: 129-133 [40] Corsolini S, Borghesi N, Ademollo N, et al. Chlorinated biphenyls and pesticides in migrating and resident seabirds from East and West Antarctica. Environment international, 2011, 37: 1329-1335 [41] Court GS, Davis LS, Focardi S, et al. Chlorinated hydrocarbons in the tissues of South Polar skuas (Catha-racta maccormicki) and Adélie penguins (Pygoscelis adeliea) from Ross Sea, Antarctica. Environmental Pollution, 1997, 97: 295-301 [42] Tao L, Kannan K, Kajiwara N, et al. Perfluorooctanesulfonate and related fluorochemicals in albatrosses, elephant seals, penguins, and polar skuas from the Southern Ocean. Environmental Science and Technology, 2006, 40: 7642-7648 [43] Brink NWVD, Riddle MJ, Heuvel-Greve MVD, et al. Contrasting time trends of organic contaminants in Anta-rctic pelagic and benthic food webs. Marine Pollution Bulletin, 2011, 62: 128-132 [44] Geisz HN, Dickhut RM, Cochran MA, et al. Melting glaciers: A probable source of DDT to the Antarctic marine ecosystem. Environmental Science and Technology, 2008, 42: 3958-3962 [45] Schiavone A, Corsolini S, Borghesi N, et al. Contamination profiles of selected PCB congeners, chlorinated pesticides, PCDD/Fs in Antarctic fur seal pups and penguin eggs. Chemosphere, 2009, 76: 264-269 [46] Corsolini S, Borghesi N, Schiamone A, et al. Polybro-minated diphenyl ethers, polychlorinated dibenzo-dio-xins, -furans, and -biphenyls in three species of Antarctic penguins. Environmental Science and Pollution Research, 2007, 14: 421-429 [47] Inomata ONK, Montone RC, Lara WH, et al. Tissue distribution of organochlorine residues-PCBs and pesticides-in Antarctic penguins. Antarctic Science, 1996, 8: 253-255 [48] Corsolini S, Kannan K, Imagawa T, et al. Polychloronaphthalenes and other dioxin-like compounds in Arctic and Antarctic marine food webs. Environmental Science and Technology, 2002, 36: 3490-3496 [49] 颜文. 南极飞禽——海鸟. 科学中国, 2007(12): 40-41 [Yan W. Antarctic birds: Seabirds. Science China, 2007(12): 40-41] [50] 王艳荣. 振翼翱翔的南极鸟. 农村青少年科学探究, 2007(8): 45 [Wang Y-R. Flying Antarctic bird. Rural Youth Scientific Inquiry, 2007(8): 45] [51] 叶新荣, 陈立红, 张荣保, 等. 南极海鸟栖息地粪土层中持久性有机氯污染物的气相色谱测定方法及环境意义. 2013中国环境科学学会学术年会, 昆明, 2013 [Ye X-R, Chen L-H, Zhang R-B, et al. Determination of persistent organochlorine pollutants in the dung layer of Antarctic seabird habitat by gas chromatography and its environmental significance. 2013 Annual Meeting of Chinese Society for Environmental Science, Kunming, 2013] [52] Colabuono FI, Taniguchi S, Petry MV. Organochlorine contaminants and polybrominated diphenyl ethers in eggs and embryos of Antarctic birds. Antarctic Science, 2015, 27: 366-361 [53] Bustnes JO, Tveraa T, Henden JA, et al. Organochlorines in Antarctic and Arctic avian top predators: A comparison between the south polar skua and two species of northern hemisphere gulls. Environmental Science and Technology, 2006, 40: 2826-2831 [54] 杨丹, 卢冰, 潘建明. 南极企鹅粪土地层、机体组织与卵中POPs含量分布及其生态环境意义. 环境科学研究, 2009, 22(4): 427-433 [Yang D, Lu B, Pan J-M. Distribution of POPs in dung formation, body tissues and eggs of Antarctic penguins and its eco-environmental significance. Environmental Science Research, 2009, 22(4): 427-433] [55] Tartu S, Angelier F, Wingfield JC, et al. Corticoste-rone, prolactin and egg neglect behavior in relation to mercury and legacy POPs in a long-lived Antarctic bird. Science of the Total Environment, 2015, 505: 180-188 [56] Hidaka H, Tanabe S, Tatsukawa R. DDT compounds and PCB isomers and congeners in weddell seals and their fate in the Antarctic marine ecosystem. Journal of the Agricultural Chemical Society of Japan, 1983, 47: 2009-2017 [57] Mcclurg TP. Trace metals and chlorinated hydrocarbons in ross seals from Antarctica. Marine Pollution Bulletin, 1984, 15: 384-389 [58] Brault EK, Goebel ME, Geisz HN, et al. Inter-annual variation of persistent organic pollutants (POPS) in an Antarctic top predator Arctocephalus gazella. Environmental Science and Technology, 2013, 47: 12744-12752 [59] Trumble SJ, Robinson EM, Noren SR, et al. Assessment of legacy and emerging persistent organic pollutants in Weddell seal tissue (Leptonychotes weddellii) near McMurdo Sound, Antarctica. Science of the Total Environment, 2012, 439: 275-283 [60] Krahn MM, Pitman RL, Burrows DG, et al. Use of chemical tracers to assess diet and persistent organic pollutants in Antarctic type C killer whales. Marine Mammal Science, 2008, 24: 643-663 [61] Aono S, Tanabe S, Fujise Y, et al. Persistent organochlorines in minke whale (Balaenoptera acutorostrata) and their prey species from the Antarctic and the North Pacific. Environmental Pollution, 1997, 98: 81-89 [62] 武丽辉, 张文君. 《斯德哥尔摩公约》受控化学品家族再添新丁. 农药科学与管理, 2017, 38(10): 17-20 [Wu L-H, Zhang W-J. New addition to the family of controlled chemicals under the Stockholm Convention.Science and Management of Pesticides, 2017, 38(10): 17-20] [63] Gerofke A, KÖmp P, Mclachlan MS. Bioconcentration of persistent organic pollutants in four species of marine phytoplankton. Environmental Toxicology and Chemistry, 2005, 24: 2908-2917 [64] Kidd KA, Bootsma HA, Hesslein RH, et al. Biomagnification of DDT through the benthic and pelagic food webs of Lake Malawi, East Africa: Importance of trophic level and carbon source. Environmental Science and Technology, 2001, 35: 14-20 [65] Nakata H, Sakai Y, Miyawaki T, et al. Bioaccumulation and toxic potencies of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in tidal flat and coastal ecosystems of the Ariake Sea, Japan. Environmental Science and Technology, 2003, 37: 3513-3521 [66] Wan Y, Jin X, Hu J, et al. Trophic dilution of polycyclic aromatic hydrocarbons (PAHs) in a marine food web from Bohai Bay, North China. Environmental Science and Technology, 2007, 41: 3109-3114 [67] Brouwer A, Reijnders PJH, Koeman JH. Polychlorina-ted biphenyl (PCB)-contaminated fish induces vitamin A and thyroid hormone deficiency in common seal (Phoca vitulina). Aquatic Toxicology, 1989, 15: 99-105 [68] Galbán-Malagón CJ, Del Vento S, Berrojalbiz N, et al. Polychlorinated biphenyls, hexachlorocyclohexanes and hexachlorobenzene in seawater and phytoplankton from the southern ocean (Weddell, South Scotia, and Bellingshausen Seas). Environmental Science and Technology, 2013, 47: 5578-5587 [69] Chiuchiolo AL, Dickhut RM, Cochran MA, et al. Persistent organic pollutants at the base of the Antarctic marine food web. Environmental Science and Technology, 2004, 38: 3551-3557 [70] Gupta RS, Sarkar A, Kureishey TW. PCBs and organochlorine pesticides in krill, birds and water from Antarctica. Deep Sea Research Part Ⅱ Topical Studies in Oceanography, 1996, 43: 119-126 [71] Corsolini S, Covaci A, Ademollo N, et al. Occurrence of organochlorine pesticides (OCPs) and their enantiomeric signatures, and concentrations of polybrominated diphenyl ethers (PBDEs) in the Adélie penguin food web, Antarctica. Environmental Pollution, 2006, 140: 371-382 [72] Cincinelli AMT, Del BM, Lepri L, et al. Organochlorine pesticide air-water exchange and bioconcentration in krill in the Ross Sea. Environmental pollution (Barking, Essex: 1987), 2009, 157: 2153-2158 [73] Cipro CVZ, Taniguchi S, Montone RC. Occurrence of organochlorine compounds in Euphausia superba and unhatched eggs of Pygoscelis genus penguins from Admiralty Bay (King George Island, Antarctica) and estimation of biomagnification factors. Chemosphere, 2010, 78: 767-771 [74] Cipro CVZ, Bustamante P, Taniguchi S, et al. Persistent organic pollutants and stable isotopes in pinnipeds from King George Island, Antarctica. Marine Pollution Bulletin, 2012, 64: 2650-2655 [75] Campfens J, Mackay D. Fugacity-based model of PCB bioaccumulation in complex aquatic food webs. Environmental Science and Technology, 1997, 31: 577-583 [76] Smith RFAG. Trends in organochlorine residue concentrations in ringed seal (Phoca hispida) from Holman, Northwest Territories, 1972-91. Arctic, 1998, 51: 253-261 |
[1] | 李林云, 段宇婧, 侯捷. 饮用水中新污染物的来源、风险评估和防控治理的研究进展 [J]. 应用生态学报, 2023, 34(12): 3447-3456. |
[2] | 刘琰琰, 李佳星, 代逸冰, 金垚, 张玉芳, 邹雨伽. 基于GIS的四川盆周北部山区夏玉米农业气象灾害风险评估——以旺苍县为例 [J]. 应用生态学报, 2022, 33(9): 2457-2465. |
[3] | 王美娥, 马万凯, 姜瑢, 谢天. 基于改进的“证据-权重法”评估污染土壤生态风险:以江苏靖江某电镀场地为例 [J]. 应用生态学报, 2022, 33(6): 1639-1651. |
[4] | 陈翔, 于敏, 蔡洪梅, 吴宇, 张乐乐, 柯媛媛, 许辉, 李金才. 小麦倒春寒研究现状与进展 [J]. 应用生态学报, 2021, 32(8): 2999-3009. |
[5] | 杨军, 章毅之, 贺浩华, 李迎春, 陈小荣, 边建民, 金国花, 李翔翔, 黄淑娥. 水稻高温热害的研究现状与进展 [J]. 应用生态学报, 2020, 31(8): 2817-2830. |
[6] | 吴海燕,傅世锋,蔡晓琼,陈庆辉. 不同底栖生物指数在福建省近岸海域的适用性 [J]. 应用生态学报, 2018, 29(6): 2051-2058. |
[7] | 唐峰华, 张胜茂, 崔雪森, 王锦龙, 杜金洲. 2013年北太平洋公海渔场柔鱼体内典型放射性核素分析及风险评估 [J]. 应用生态学报, 2017, 28(9): 3071-3077. |
[8] | 张菡, 郑昊, 王明田, 游超. 基于GIS的秋季连阴雨对农业生产影响的风险评估——以四川省盆地区为例 [J]. 应用生态学报, 2017, 28(8): 2569-2576. |
[9] | 庞文品, 秦樊鑫, 吕亚超, 李英菊, 李 刚, 李新丽. 贵州兴仁煤矿区农田土壤重金属化学形态及风险评估 [J]. 应用生态学报, 2016, 27(5): 1468-1478. |
[10] | 田晓瑞, 代玄, 王明玉, 赵凤君, 舒立福. 多气候情景下中国森林火灾风险评估 [J]. 应用生态学报, 2016, 27(3): 769-776. |
[11] | 赵卫, 沈渭寿, 刘海月. 自然保护区气候变化风险及其评估——以达里诺尔国家级自然保护区为例 [J]. 应用生态学报, 2016, 27(12): 3831-3837. |
[12] | 程苗苗, 舒迎花, 王建武. Bt水稻秸秆还田对赤子爱胜蚓生长发育和生殖的影响 [J]. 应用生态学报, 2016, 27(11): 3667-3674. |
[13] | 徐晶晶, 吴波, 张玲妍, 郭书海, 李刚, 李凤梅. 基于贝叶斯方法的湖南湘潭稻米Cd超标风险评估 [J]. 应用生态学报, 2016, 27(10): 3221-3227. |
[14] | 毛旭连,刘锦,李许可,迟家家,刘永杰*. 灰飞虱对噻嗪酮的抗性风险及机理 [J]. 应用生态学报, 2016, 27(1): 255-262. |
[15] | 胡金星1,苏晓梅1,韩慧波2,沈超峰1**,施积炎1. 固定化微生物技术修复多氯联苯污染土壤的应用前景 [J]. 应用生态学报, 2014, 25(6): 1806-1814. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 55
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 521
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||