应用生态学报 ›› 2021, Vol. 32 ›› Issue (2): 719-728.doi: 10.13287/j.1001-9332.202102.041
梁文举1*, 董元华2, 李英滨1, 张晓珂1, 李琪1, 武志杰1
收稿日期:
2020-12-10
接受日期:
2021-01-08
出版日期:
2021-02-15
发布日期:
2021-08-15
通讯作者:
*E-mail: liangwj@iae.ac.cn
作者简介:
梁文举, 男, 1964年生, 研究员, 博士生导师。主要从事土壤生态学、土壤食物网、土壤健康研究。E-mail: liangwj@iae.ac.cn
基金资助:
LIANG Wen-ju1*, DONG Yuan-hua2, LI Ying-bin1, ZHANG Xiao-ke1, LI Qi1, WU Zhi-jie1
Received:
2020-12-10
Accepted:
2021-01-08
Online:
2021-02-15
Published:
2021-08-15
Contact:
*E-mail: liangwj@iae.ac.cn
Supported by:
摘要: 如何有效判定土壤健康状态是实现农业绿色发展的基本问题。在现有的土壤健康评价体系中,很少考虑土壤生物在维持土壤健康方面的作用。基于此,本文论述了土壤健康的内涵,从土壤生物健康的角度,总结了土壤健康的生物学表征指标,阐述了土壤微生物、土壤酶活性、土壤微食物网及蚯蚓对土壤健康的指示作用。基于上述生物指标,从作物和土壤管理等方面探讨了不同农田管理措施对土壤健康状况的调控途径,并对土壤生物健康的未来发展趋势进行了展望。本文旨在增强科学家和决策者对维护土壤生物健康的认识,充分发挥土壤生物在生态系统服务中的重要作用。
梁文举, 董元华, 李英滨, 张晓珂, 李琪, 武志杰. 土壤健康的生物学表征与调控[J]. 应用生态学报, 2021, 32(2): 719-728.
LIANG Wen-ju, DONG Yuan-hua, LI Ying-bin, ZHANG Xiao-ke, LI Qi, WU Zhi-jie. Biological characterization and regulation of soil health[J]. Chinese Journal of Applied Ecology, 2021, 32(2): 719-728.
[1] FAO and ITPS. Status of the World’s Soil Resources (SWSR). Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel of Soils, Italy, 2015: 222-243 [2] 张俊伶, 张江周, 申建波, 等. 土壤健康与农业绿色发展: 机遇与对策. 土壤学报, 2020, 57(4): 783-796 [Zhang J-L, Zhang J-Z, Shen J-B, et al. Soil health and agriculture green development: Opportunities and challenges. Acta Pedologica Sinica, 2020, 57(4): 783-796] [3] Lehmann J, Bossio DA, Kogel-Knabner I, et al. The concept and future prospects of soil health. Nature Reviews Earth & Environment, 2020, 2: 544-553 [4] 朱永官, 彭静静, 韦中, 等. 土壤微生物组与土壤健康. 中国科学: 生命科学, 2020, 50, doi: 10.1360/SSV-2020-0320 [Zhu Y-G, Peng J-J, Wei Z, et al. Linking the soil microbiome to soil health. Scientia Sinica Vitae, 2020, 50, doi: 10.1360/SSV-2020-0320] [5] Brevik EC, Hartemink AE. Early soil knowledge and the birth and development of soil science. Catena, 2010, 83: 23-33 [6] Orgiazzi A, Bardgett R, Barrios E, et al. Global Soil Biodiversity Atlas. European Commission. Luxembourg: Publications Office of the European Union, 2016: 92-115 [7] FAO, ITPS, GSBI. State of Knowledge of Soil Biodiversity: Status, Challenges and Potentialities, Report 2020. Rome, 2020: 1-2 [8] 张桃林, 潘剑君, 赵其国. 土壤质量研究进展与方向. 土壤, 1999, 31(1): 1-7 [Zhang T-L, Pan J-J, Zhao Q-G. Soil quality research progress and direction. Soils, 1999, 31(1): 1-7] [9] 曹志洪. 解译土壤质量演变规律, 确保土壤资源持续利用. 世界科技研究与发展, 2001, 23(3): 28-32 [Cao Z-H. Study on the principles of soil quality changing to promote sustainable use of soil resources. World Science and Technology Research and Development, 2001, 23(3): 28-32] [10] 杨晓霞, 周启星, 王铁良. 土壤健康的内涵及生态指示与研究展望. 生态科学, 2007, 26(4): 374-380 [Yang X-X, Zhou Q-X, Wang T-L. Connotation and ecological indicators of soil health and its research prospect. Ecological Science, 2007, 26(4): 374-380] [11] 朱永官, 李刚, 张甘霖, 等. 从地球关键带到生态系统服务. 地理学报, 2015, 70(12): 1859-1869 [Zhu Y-G, Li G, Zhang G-L, et al. Soil security: From Earth’s critical zone to ecosystem services. Acta Geographica Sinica, 2015, 70(12): 1859-1869] [12] Bünemann EK, Bongiorno G, Bai Z, et al. Soil quality: A critical review. Soil Biology and Biochemistry, 2018, 120: 105-125 [13] 汪海燕, 王辉, 董元华, 等. 土壤生态环境质量评价指标及方法研究概述. 安徽农业科学, 2013, 41(20): 8575-8577 [Wang H-Y, Wang H, Dong Y-H, et al. Evaluation index and method for soil ecological environment quality. Journal of Anhui Agricultural Sciences, 2013, 41(20): 8575-8577] [14] 张敏, 盛丰. 多层次模糊综合评价法在土壤健康评价中的应用. 北方农业学报, 2017, 45(6): 92-96 [Zhang M, Sheng F. Application of multilevel fuzzy comprehensive evaluation method in soil health assessment. Journal of Northern Agriculture, 2017, 45(6): 92-96] [15] 赵瑞, 吴克宁, 刘亚男, 等. 基于生态系统服务功能视角的县域尺度土壤健康评价. 土壤通报, 2020, 51(2): 269-279 [Zhao R, Wu K-N, Liu Y-N, et al. Soil health evaluation at a county level based on soil ecosystem service function. Chinese Journal of Soil Science, 2020, 51(2): 269-279] [16] Karlen DL, Veum KS, Sudduth KA, et al. Soil health assessment: Past accomplishments, current activities, and future opportunities. Soil and Tillage Research, 2019, 195: 104365 [17] 盛丰. 康奈尔土壤健康评价系统及其应用. 土壤通报, 2014, 45(6): 1289-1296 [Sheng F. Introduction and application of Cornell Soil Health Assessment. Chinese Journal of Soil Science, 2014, 45(6): 1289-1296] [18] 梁文举, 葛亭魁, 段玉玺. 土壤健康及土壤动物生物指示的研究与应用. 沈阳农业大学学报, 2001, 32(1): 70-72 [Liang W-J, Ge T-K, Duan Y-X. Bioindication of soil fauna to soil health. Journal of Shenyang Agricultural University, 2001, 32(1): 70-72] [19] Nair P. Evaluation of soil biological agents as indicators of soil health. Journal of Agriculture Biotechnology, 2016, 1: 9-15 [20] Brackin R, Schmidt S, Walther D, et al. Soil biological health: What is it and how can we improve it? Austra-lian Society of Sugar Cane Technologists, 2017, 39: 141-154 [21] Delgado-Baquerizo M, Grinyer J, Reich PB, et al. Rela-tive importance of soil properties and microbial community for soil functionality: Insights from a microbial swap experiment. Functional Ecology, 2016, 30: 1862-1873 [22] Freilich S, Kreimer A, Meilijson I, et al. The large-scale organization of the bacterial network of ecological co-occurrence interactions. Nucleic Acids Research, 2010, 38: 3857-3868 [23] Deng L, Liu GB, Shangguan ZP. Land-use conversion and changing soil carbon stocks in China’s ‘grain-for-green’ program: A synthesis. Global Change Biology, 2014, 20: 3544-3556 [24] Wang LX, Pang XY, Li N, et al. Effects of vegetation type, fine and coarse roots on soil microbial communities and enzyme activities in eastern Tibetan plateau. Catena, 2020, 194: 104694 [25] Kivlin SN, Treseder KK. Soil extracellular enzyme acti-vities correspond with abiotic factors more than fungal community composition. Biogeochemistry, 2014, 117: 23-37 [26] Waring BG, Weintraub SR, Sinsabaugh RL. Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils. Biogeochemistry, 2013, 117: 101-113 [27] Zhao F, Xu B, Yang X, et al. Remote sensing estimates of grassland aboveground biomass based on MODIS net primary productivity (NPP): A case study in the Xilingol Grassland of Northern China. Remote Sensing, 2014, 6: 5368-5386 [28] Burns RG, De Forest JL, Marxsen J, et al. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology and Biochemistry, 2013, 58: 216-234 [29] Ovsepyan L, Kurganova IN, Gerenyu VLD, et al. Conversion of cropland to natural vegetation boosts microbial and enzyme activities in soil. Science of the Total Environment, 2020, 743: 140829 [30] Ma WW, Li G, Wu JH, et al. Response of soil labile organic carbon fractions and carbon-cycle enzyme activities to vegetation degradation in a wet meadow on the Qinghai-Tibet Plateau. Geoderma, 2020, 377: 114565 [31] Acosta-Martinez V, Cruz L, Sotomayor-Ramirez D, et al. Enzyme activities as affected by soil properties and land use in a tropical watershed. Applied Soil Ecology, 2007, 35: 35-45 [32] Lino I, Dos Santos VM, Escobar IEC, et al. Soil enzymatic activity in Eucalyptus grandis plantations of diffe-rent Ages. Land Degradation and Development, 2016, 27: 77-82 [33] Ren CJ, Kang D, Wu JP, et al. Temporal variation in soil enzyme activities after afforestation in the Loess Plateau, China. Geoderma, 2016, 282: 103-111 [34] 张晓珂, 梁文举, 李琪. 我国土壤线虫生态学研究进展和展望. 生物多样性, 2018, 26(10): 1060-1073 [Zhang X-K, Liang W-J, Li Q. Recent progress and future directions of soil nematode ecology in China. Biodiversity Science, 2018, 26(10): 1060-1073] [35] 李玉娟, 吴纪华, 陈慧丽, 等. 线虫作为土壤健康指示生物的方法及应用. 应用生态学报, 2005, 16(8): 1541-1546 [Li Y-J, Wu J-H, Chen H-L, et al. Nematodes as bioindicator of soil health: Methods and applications. Chinese Journal of Applied Ecology, 2005, 16(8): 1541-1546] [36] Bongers T. The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia, 1990, 83: 14-19 [37] Yeates GW, Bongers T, De Goede RG, et al. Feeding habits in soil nematode families and genera: An outline for soil ecologists. Journal of Nematology, 1993, 25: 315-331 [38] Ferris H, Bongers T, De Goede RG. A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Applied Soil Ecology, 2001, 18: 13-29 [39] Ferris H. Form and function: Metabolic footprints of nematodes in the soil food web. European Journal of Soil Biology, 2010, 46: 97-104 [40] 杜晓芳, 李英滨, 刘芳, 等. 土壤微食物网结构与生态功能. 应用生态学报, 2018, 29(2): 403-411 [Du X-F, Li Y-B, Liu F, et al. Structure and ecological functions of soil micro-food web. Chinese Journal of Applied Ecology, 2018, 29(2): 403-411] [41] 傅声雷, 张卫信, 邵元虎, 等. 土壤生态学——土壤食物网及其生态功能. 北京: 科学出版社, 2019: 80-82 [Fu S-L, Zhang W-X, Shao Y-H, et al. Soil Ecology: Soil Food Web and Its Ecological Function. Beijing: Science Press, 2019: 80-82] [42] Shi Z, Tang Z, Wang C. A brief review and evaluation of earthworm biomarkers in soil pollution assessment. Environmental Science and Pollution Research, 2017, 24: 13284-13294 [43] Lapied E, Nahmani J, Rousseau GX. Influence of texture and amendments on soil properties and earthworm communities. Applied Soil Ecology, 2009, 43: 241-249 [44] Decaëns T, Bureau F, Margerie P. Earthworm communities in a wet agricultural landscape of the Seine Valley (Upper Normandy, France). Pedobiologia, 2003, 47: 479-489 [45] Abail Z, Whalen JK. Corn residue inputs influence earthworm population dynamics in a no-till corn-soybean rotation. Applied Soil Ecology, 2018, 127: 120-128 [46] Treder K, Jastrzbska M, Kostrzewska MK, et al. Do long-term continuous cropping and pesticides affect earthworm communities? Agronomy, 2020, 10: 586 [47] Hattab S, Boughattas I, Mkhinini M, et al. Impact of intensive farming on soil heavy metal accumulation and biomarkers responses of earthworms Eisenia andrei. Bulletin of Environmental Contamination and Toxicology, 2020, 105: 559-564 [48] 谢文明, 韩大永, 孟凡贵, 等. 蚯蚓对土壤中有机氯农药的生物富集作用研究. 吉林农业大学学报, 2005, 27(4): 420-423 [Xie W-M, Han D-Y, Meng F-G, et al. Bioconcentration of oganochlorine pesticides from soil of earthworms. Journal of Jilin Agricultural University, 2005, 27(4): 420-423] [49] Chen J, Saleem M, Wang C, et al. Individual and combined effects of herbicide tribenuron-methyl and fungicide tebuconazole on soil earthworm Eisenia fetida. Scientific Reports, 2018, 8: 2967 [50] Jernigan AB, Wickings K, Moheler CL, et al. Legacy effects of contrasting organic grain cropping systems on soil health indicators, soil invertebrates, weeds, and crop yield. Agricultural Systems, 2020, 177: 102719 [51] De Deyn GB, Van der Putten WH. Linking aboveground and belowground diversity. Trends in Ecology and Evolution, 2005, 20: 625-633 [52] Peters RD, Sturz AV, Carter MR, et al. Developing disease-suppressive soils through crop rotation and tillage management practices. Soil and Tillage Research, 2003, 72: 181-192 [53] Latz E, Eisenhauer N, Rall BC, et al. Plant diversity improves protection against soil-borne pathogens by fostering antagonistic bacterial communities. Journal of Ecology, 2012, 100: 597-604 [54] Li L, Li SM, Sun JH, et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104: 11192-11196 [55] Daryanto S, Fu BJ, Wang LX, et al. Quantitative synthesis on the ecosystem services of cover crops. Earth-Science Reviews, 2018, 185: 357-373 [56] Baker JM. Tillage and soil carbon sequestration-what do we really know? Agriculture, Ecosystems and Environment, 2007, 118: 1-5 [57] 胡钧铭, 陈胜男, 韦翔华, 等. 耕作对健康耕层结构的影响及发展趋势. 农业资源与环境学报, 2018, 35(2): 95-103 [Hu J-M, Chen S-N, Wei X-H, et al. Effects of tillage model on healthy plough layer structure and its development trends. Journal of Agricultural Resources and Environment, 2018, 35(2): 95-103] [58] Zhang SX, Li Q, Lü Y, et al. Conservation tillage positively influences the microflora and microfauna in the black soil of Northeast China. Soil and Tillage Research, 2015, 149: 46-52 [59] Derpsch R, Friedrich T, Kassam A, et al. Current status of adoption of no-till farming in the world and some of its main benefits. International Journal of Agricultural and Biological Engineering, 2010, 3: 1-25 [60] Kou XC, Ma NN, Zhang XK, et al. Frequency but not amount of stover mulching orchestrates the decomposition pathways of soil micro-food webs in a no-tillage system. Soil Biology and Biochemistry, 2020, 144: 107789 [61] Ning Q, Chen L, Jia ZJ, et al. Multiple long-term observations reveal a strategy for soil pH-dependent fertilization and fungal communities in support of agricultural production. Agriculture, Ecosystems and Environment, 2020, 293: 106837 [62] Treseder KK. Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies. Ecology Letters, 2008, 11: 1111-1120 [63] Pommeresche R, Løes AK, Torp T. Effects of animal manure application on springtails (Collembola) in perennial ley. Applied Soil Ecology, 2017, 110: 137-145 [64] Li LJ, Han XZ, You MY, et al. Carbon and nitrogen mineralization patterns of two contrasting crop residues in a Mollisol: Effects of residue type and placement in soils. European Journal of Soil Biology, 2013, 54: 1-6 [65] Liang WJ, Lou YL, Li Q, et al. Nematode faunal response to long-term application of nitrogen fertilizer and organic manure in Northeast China. Soil Biology and Biochemistry, 2009, 41: 883-890 [66] Cui SY, Liang SW, Zhang XK, et al. Long-term fertilization management affects the C utilization from crop residues by the soil micro-food web. Plant and Soil, 2018, 429: 335-348 [67] Wang SJ, Tan Y, Fan H, et al. Responses of soil micro arthropods to inorganic and organic fertilizers in a poplar plantation in a coastal area of eastern China. Applied Soil Ecology, 2015, 89: 69-75 [68] 朱新玉, 朱波. 不同施肥方式对紫色土农田土壤动物主要类群的影响. 中国农业科学, 2015, 48(5): 911-920 [Zhu X-Y, Zhu B. Effect of different fertilization regimes on the main groups of soil fauna in cropland of purple soil. Scientia Agricultura Sinica, 2015, 48(5): 911-920] [69] Mäder P, Flieβbach A, Dubois A, et al. Biodiversity in organic farming. Science, 2002, 296: 1694-1697 [70] Zhang ZY, Zhang XK, Mahamood M, et al. Effect of long-term combined application of organic and inorganic fertilizers on soil nematode communities within aggregates. Scientific Reports, 2016, 6: 31118 [71] 叶成龙, 刘婷, 张云龙, 等. 麦地土壤线虫群落结构对有机肥和秸秆还田的响应. 土壤学报, 2013, 50(5): 997-1005 [Ye C-L, Liu T, Zhang Y-L, et al. Response of soil nematode community to application of organic manure and incorporation of straw in wheat field. Acta Pedologica Sinica, 2013, 50(5): 997-1005] [72] Sanchez-Moreno S, Ferris H. Suppressive service of the soil food web: Effects of environmental management. Agriculture, Ecosystems and Environment, 2007, 119: 75-87 [73] Gahave KR, Hourston JE, Gange AC. Developing soil microbial inoculants for pest management: Can one have too much of a good thing? Journal of Chemical Ecology, 2016, 42: 348-356 [74] Yang J, Kloepper JW, Ryu CM. Rhizosphere bacteria help plants tolerate abiotic stress. Trend in Plant Science, 2009, 14: 1-4 [75] Pereira SIA, Abreu D, Moreira H, et al. Plant growth-promoting rhizobacteria (PGPR) improve the growth and nutrient use efficiency in maize (Zea mays L.) under water deficit conditions. Heliyon, 2020, 6: e05106 [76] 杨泽元, 吕德国. 我国微生物肥料在果树上的应用研究进展. 北方果树, 2014(1): 1-4 [Yang Z-Y, Lyu D-G. Research progress about the application of micro-bial fertilizer in fruit production. Northern Fruits, 2014(1): 1-4] [77] 阎世江, 李照全, 张治家. 固氮菌肥对小麦生长和产量的影响. 科学技术与工程, 2017, 17(15): 181-184 [Yan S-J, Li Z-Q, Zhang Z-J. Bacterial fertilizer on wheat growth and yield. Science Technology and Engineering, 2017, 17(15): 181-184] [78] Gaugler R, Lewis E, Stuart RJ. Ecology in the service of biological control: The case of entomopathogenic nematodes. Oecologia, 1997, 109: 483-489 [79] Abd-Elgawad MMM. Can rational sampling maximise isolation and fix distribution measure of entomopathogenic nematodes? Nematology, 2020, 22: 907-916 [80] Theopold U, Dziedziech A, Hyrsl P. Special Issue: Insects, nematodes, and their symbiotic bacteria. Insects, 2020, 11: 577 [81] 张秀霞, 白婷婷, 毛晓红, 等. 4种微生物杀虫剂对甜菜夜蛾的室内毒力及田间防效评价. 山东农业科学, 2020, 52(4): 141-145 [Zhang X-X, Bai T-T, Mao X-H, et al. Toxicity test in laboratory and control efficacy in field of four microbial insecticides to Spodop-tera exigua. Shandong Agricultural Sciences, 2020, 52(4): 141-145] [82] Williams H, Colombi T, Keller T. The influence of soil management on soil health: An on-farm study in southern Sweden. Geoderma, 2020, 360: 114010 [83] Maharjan B, Das S, Acharya BS. Soil health gap: A concept to establish a benchmark for soil health management. Global Ecology and Conservation, 2020, 23: e01116 [84] Dubey A, Malla MA, Khan F, et al. Soil microbiome: A key player for conservation of soil health under changing climate. Biodiversity and Conservation, 2019, 28: 2405-2429 |
[1] | 王骁, 梁思维, 田艺佳, 刘笑彤, 梁文举, 张晓珂. 稳定同位素技术在土壤食物网研究中的应用 [J]. 应用生态学报, 2023, 34(10): 2861-2870. |
[2] | 韩继刚, 李刚, 张维维, 刘文, 刘舒, 马想, 张浪, 朱永官. 城市绿地土壤健康质量问题与对策 [J]. 应用生态学报, 2022, 33(1): 268-276. |
[3] | 赵一, 杨贝贝, 朱新萍, 陈署晃, 陈小云, 贾宏涛. 氮肥减施与配施有机肥对冬小麦土壤线虫群落结构的影响 [J]. 应用生态学报, 2021, 32(4): 1433-1440. |
[4] | 朱永恒1,2**,李克中1,张衡1,韩斐1,周举花1,高婷婷1. 不同植物群丛下铜尾矿复垦地土壤线虫的分布特征 [J]. 应用生态学报, 2015, 26(2): 570-578. |
[5] | 黄志霖,田耀武,肖文发,刘志彦. 农业管理措施对三峡库区流域非点源污染削减效果评价 [J]. 应用生态学报, 2010, 21(06): 1530-1536. |
[6] | 于格1,2;鲁春霞1;谢高地1. 青藏高原草地生态系统服务功能的季节动态变化 [J]. 应用生态学报, 2007, 18(01): 47-51 . |
[7] | 尹飞1,2;毛任钊2;傅伯杰1;刘国华1. 农田生态系统服务功能及其形成机制 [J]. 应用生态学报, 2006, 17(05): 929-934 . |
[8] | 朱泽生1;孙玲2. 东台市滩涂生态系统服务价值研究 [J]. 应用生态学报, 2006, 17(05): 878-882 . |
[9] | 肖玉, 谢高地, 鲁春霞. 稻田生态系统氮素转化经济价值研究 [J]. 应用生态学报, 2005, 16(9): 1740-1744. |
[10] | 肖玉1,2 谢高地1 鲁春霞1. 稻田生态系统氮素转化经济价值研究 [J]. 应用生态学报, 2005, 16(09): 1745-1750 . |
[11] | 欧阳志云, 赵同谦, 赵景柱, 肖寒, 王效科. 海南岛生态系统生态调节功能及其生态经济价值研究 [J]. 应用生态学报, 2004, (8): 1395-1402. |
[12] | 欧阳志云, 赵同谦, 赵景柱, 肖寒, 王效科. 海南岛生态系统生态调节功能及其生态经济价值研究 [J]. 应用生态学报, 2004, (8): 1395-1402. |
[13] | 欧阳志云 赵同谦 赵景柱 肖寒 王效科. 海南岛生态系统生态调节功能及其生态经济价值研究 [J]. 应用生态学报, 2004, 15(08): 1395-1402 . |
[14] | 顾继光, 周启星. 磁处理土壤对油菜幼苗生理生化指标的影响 [J]. 应用生态学报, 2003, (5): 794-796. |
[15] | 肖玉, 谢高地, 安凯. 莽措湖流域生态系统服务功能经济价值变化研究 [J]. 应用生态学报, 2003, (5): 676-680. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||