[1] 蒋志刚. 中国脊椎动物生存现状研究. 生物多样性, 2005, 24(5): 495-499 [Jiang Z-G. Assessing the surviving status of vertebrates in China. Biogiversity Science, 2005, 24(5): 495-499] [2] 魏辅文, 杜卫国, 詹祥江, 等. 中国典型脆弱生态修复与保护研究: 珍稀动物濒危机制及保护技术. 兽类学报, 2016, 36(4): 469-475 [Wei F-W, Du W-G, Zhan X-J, et al. Ecological restoration and conservation research of typical fragile ecosystems in China: Endangerment mechanisms and conservation technologies of endangered animals. Acta Theriologica Sinica, 2016, 36(4): 469-475] [3] Urban MC. Accelerating extinction risk from climate change. Science, 2015, 348: 571-573 [4] Visser ME. Keeping up with a warming world; assessing the rate of adaptation to climate change. Proceedings of the Royal Society B-Biological Sciences, 2008, 275: 649-659 [5] Büntgen U, Greuter L, Mollmann K, et al. Elevational range shifts in four mountain ungulate species from the Swiss Alps. Ecosphere, 2017, 8: e01761 [6] Jiang F, Li GY, Qin W, et al. Setting priority conservation areas of wild Tibetan gazelle (Procapra picticaudata) in China's first national park. Global Ecology and Conservation, 2019, 20: e00725 [7] Luo LH, Ma W, Zhuang YL, et al. The impacts of climate change and human activities on alpine vegetation and permafrost in the Qinghai-Tibet Engineering Corridor. Ecological Indicators, 2018, 93: 24-35 [8] Maclean MD, Wilson RJ. Recent ecological responses to climate change support predictions of high extinction risk. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108: 12337-12342 [9] Wu XY, Dong SK, Liu SL, et al. Predicting the shift of threatened ungulates' habitats with climate change in Altun Mountain National Nature Reserve of the Northwestern Qinghai-Tibetan Plateau. Climatic Change, 2017, 142: 331-344 [10] 崔绍鹏, 罗晓, 李春旺, 等. 基于MaxEnt模型预测白唇鹿的潜在分布区. 生物多样性, 2018, 26(2): 171-176 [Cui S-P, Luo X, Li C-W, et al. Predicting the potential distribution of white-lipped deer using the MaxEnt model. Biodiveristy Science, 2018, 26(2): 171-176] [11] 蒋志刚, 江建平, 王跃招, 等. 中国脊椎动物红色名录. 生物多样性, 2016, 24(5): 500-551 [Jiang Z-G, Jiang J-P, Wang Y-Z, et al. Red list of China's vertebrates. Biodiveristy Science, 2016, 24(5): 500-551] [12] 国家林业和草原局. 国家重点保护野生动物名录 [EB/OL]. (2021-02-01) [2021-06-28]. http://www.forestry.gov.cn/html/main/main_3954/20210225160-347342521589/file/20210225160401102702964.pdf [National Forestry and Grassland Administration. National Key Protected Wildlife List [EB/OL] (2021-02-01) [2021-06-28]. http://www.forestry.gov.cn/html/main/main_3954/20210225160347342521589/file/20210225-160] [13] 陈强强, 李美玲, 韩芳, 等. 新疆塔什库尔干野生动物自然保护区马可波罗盘羊种群调查. 四川动物, 2018, 37(6): 637-645 [Chen Q-Q, Li M-L, Han F, et al. Population survey of Ovis ammon polii in Taxkorgan Nature Reserve, Xinjiang, 2018. Sichuan Journal of Zoology, 37(6): 637-645] [14] 龚明昊, 戴志刚, 曾志高, 等. 新疆塔什库尔干自然保护区马可波罗盘羊种群数量和栖息地初步调查. 兽类学报, 2007, 27(4): 317-324 [Gong M-H, Dai Z-G, Zeng Z-G, et al. A preliminary survey of population size and habitats of Marco Polo sheep (Ovis ammon polii)in Taxkorgan Nature Reserve, Xinjiang, China. Acta Theriologica Sinica, 2007, 27(4): 317-324] [15] 李美玲, 陈强强, 韩雷, 等. 新疆塔什库尔干野生动物自然保护区马可波罗盘羊生境适宜性评价. 生态学报, 2020, 40(11): 3549-3559 [Li M-L, Chen Q-Q, Han L, et al. Habitat suitability assessment of Marco Polo sheep in Taxkorgan Nture Reserve in Xinjiang. Acta Ecologica Sinica, 2020, 40(11): 3549-3559] [16] 王玉涛, 戴志刚, 杨世杰, 等. 东帕米尔高原盘羊分布与栖息地植被覆盖时空变化. 生态学报, 2016, 36(1): 209-217 [Wang Y-T, Dai Z-G, Yang S-J, et al. The distribution of marco polo sheep and their habitat vegetation dynamics in east pamir. Acta Ecologica Sinica, 2016, 36(1): 209-217] [17] 龚明昊, 戴志刚, 曾治高, 等. 新疆塔什库尔干自然保护区马可波罗盘羊种群数量和栖息地初步调查. 兽类学报, 2007, 27(4): 317-324 [Gong M-H, Dai Z-G, Zeng Z-G, et al. A preliminary survey of populationsize andhabitats of Marco Polo sheep (Ovis ammon polii)in Taxkorgan Nature Reserve, Xinjiang, China. Acta Theriologica Sinica, 2007, 27(4): 317-324] [18] 王茹林, 李庆, 封传红, 等. 基于MaxEnt的西藏飞蝗在中国的适生区预测. 生态学报, 2017, 37(24): 8556-8566 [Wang R-L, Li Q, Feng C-H, et al. Predicting potential ecological distribution of Locusta migratoria tibetensis in China using MaxEnt ecological niche modeling. Acta Ecologica Sinica, 2017, 37(24): 8556-8566] [19] Karger DN, Conrad O, Böhner J, et al. Climatologies at high resolution for the earth's land surface areas. Scientific Data, 2017, 4: 170122 [20] 吴统文, 宋连春, 李伟平, 等. 北京气候中心气候系统模式研发进展在气候变化研究中的应用. 气象学报, 2014, 72(1): 12-29 [Wu T-W, Song L-C, Li W-P, et al. An overview on progress in Beijing Climate Center Climate System Model: Its development and application to climate change studies. Acta Meteorologica Sinica, 2014, 72(1): 12-29] [21] Phillips SJ, Anderson RP, Schapire RE.Maximum entropy modeling of species geographic distributions. Ecological Modelling, 2006, 190: 231-259 [22] 孔维尧, 李欣海, 邹红菲. 最大熵模型在物种分布预测中的优化. 应用生态学报, 2019, 30(6): 2116-2128 [Kong W-R, Li X-H, Zou H-F. Optimizing MaxEnt model in the prediction of species distribution. Chinese Journal of Applied Ecology, 2019, 30(6): 2116-2128] [23] Behdarvand N, Kaboli M, Ahmadi M, et al. Spatial risk model and mitigation implications for wolf-human conflict in a highly modified agroecosystem in western Iran. Biological Conservation, 2014, 177: 156-164 [24] Araujo MB, Whittaker RJ, Ladle RJ, et al. Reducing uncertainty in projections of extinction risk from climate change. Global Ecology and Biogeography, 2005, 14: 529-538 [25] 吴文, 李月辉, 胡远满, 等. 不同营林面积情景下鹿科动物的潜在生境分布. 应用生态学报, 2017, 28(8): 2705-2713 [Wu W, Li Y-H, Hu Y-M, et al. Potential habitat distribution for Cervids based on diffe-rent forest management area scenarios. Chinese Journal of Applied Ecology, 2017, 28(8): 2705-2713] [26] 张慧, 高吉喜, 马孟枭, 等. 基于MaxEnt模型的道路对朱鹮繁殖地的影响. 应用生态学报, 2017, 28(4): 1352-1359 [Zhang H, Gao J-X, Ma M-X, et al. Influence of road on breeding habitat of Nipponia nippon based on MaxEnt model. Chinese Journal of Applied Ecology, 2017, 28(4): 1352-1359] [27] 张殷波, 刘彦岚, 秦浩, 等. 气候变化条件下山西翅果油树适宜分布区的空间迁移预测. 应用生态学报, 2019, 30(2): 496-502 [Zhang Y-B, Liu Y-L, Qin H, et al. Suitable distribution of Elaeagnus mollis under climate change conditions in Shanxi Province, China. Chinese Journal of Applied Ecology, 2019, 30(2): 496-502] [28] 张殷波, 高晨虹, 秦浩. 山西翅果油树的适生区预测及其对气候变化的响应. 应用生态学报, 2018, 29(4): 1156-1162 [Zhang Y-B, Gao C-H, Qin H. Prediction of the suitable distribution and responses to climate change of Elaeagnus mollis in Shanxi Province, China. Chinese Journal of Applied Ecology, 2018, 29(4): 1156-1162] [29] 雷璇, 杨波, 蒋卫国, 等. 东洞庭湿地植被格局变化及其影响因素. 地理研究, 2012, 31(3): 461-470 [Lei X, Yang B, Jiang W-G, et al. Vegetation pattern changes and their influencing factors in the East Dongting Lake wetland. Geographical Research, 2012, 31(3): 461-470] [30] Luo Z, Jiang ZG, Tang SH. Impacts of climate change on distributions and diversity of ungulates on the Tibetan Plateau. Ecological Applications, 2015, 25: 24-38 [31] Lamsal P, Kumar, Aryal A, et al. Future climate and habitat distribution of Himalayan Musk Deer (Moschus chrysogaster). Ecological Informatics, 2018, 44: 101-108 [32] Salas EAL, Valdez R, Michel S, et al. Habitat assessment of Marco Polo sheep (Ovis ammon polii) in Eas-tern Tajikistan: Modeling the effects of climate change. Ecology and Evolution, 2018, 8: 5124-5138 [33] 李美玲. 气候变化下马可波罗盘羊的环境适应性及生境廊道识别. 硕士论文. 乌鲁木齐: 新疆大学, 2019 [Li M-L. Environmental Adaptability and Habitat Corridor Identification of Marco Polo Sheep under Climate Change. Matster Thesis. Urumqi: Xinjiang University, 2019] [34] 雷军成, 王莎, 王军围, 等. 未来气候变化对我国特有濒危动物黑麂适宜生境的潜在影响. 生物多样性, 2016, 24(12): 1390-1399 [Lei J-C, Wang S, Wang J-W, et al. Potential effects of future climate change on suitable habitat of Muntiacus crinifrons, an endangered and endemic species in China. Biodiversity Science, 2016, 24(12): 1390-1399] [35] 张薇, 姜哲, 巩虎忠, 等. 气候变化对东北濒危动物驼鹿潜在生境的影响. 生态学报, 2016, 36(7): 1815-1823 [Zhang W, Jiang Z, Gong H-Z, et al. Effects of climate change on the potential habitat of Alces alces cameloides, an endangered species in Northeastern China. Acta Ecologica Sinica, 2016, 36(7): 1815-1823] [36] Parmesan C. Climate and species's range. Nature, 1996, 382: 765-766 [37] Chen IC, Hill JK, Ohlemüller R, et al. Rapid range shifts of species associated with high levels of climate warming. Science, 2011, 333: 1024-1026 [38] 李美玲, 陈强强, 汪沐阳, 等. 基于 MaxEnt 模型的马可波罗盘羊生境适宜性评价. 生态学杂志, 2019, 38(2): 594-603 [Li M-L, Chen Q-Q, Wang M-Y, et al. Assessment of habitat suitability of Ovis ammon polii based on MaxEnt modeling in Taxkorgan Wildlife Nature Reserve. Chinese Journal of Ecology, 2019, 38(2): 594-603] [39] Schaller GB, Kang A. Status of Marco Polo sheep Ovis ammon polii in China and adjacent countries: Conservation of a vulnerable subspecies. Oryx, 2008, 2: 100-106 [40] Valdez R, Michel S, Subbotin A, et al. Status and popu-lation structure of a hunted population of Marco Polo Argali Ovis ammon polii (Cetartiodactyla, Bovidae) in Southeastern Tajikistan. Mammalia, 2016, 80: 49-57 [41] Fedosenko A. Status of the argali (archar) populations in Russia and Republics of Middle Asia. Contribution to Hunting and Wildlife Research, 2003, 28: 143-149 [42] Guisan A, Tingley R, Baumgartner, et al. Predicting species distributions for conservation decisions. Ecology Letters, 2013, 16: 1424-1435 [43] Blois JL, Zarnetske PL, Fitzpatrick MC, et al. Climate change and the past, present, and future of biotic inte-ractions. Science, 2013, 341: 499-505 [44] Filazzola A, Matter SF, Roland J. Inclusion of trophic interactions increases the vulnerability of an alpine butterfly species to climate change. Global Change Biology, 2020, 26: 2867-2877 |