[1] |
Katiyar D, Hemantaranjan A, Singh B. Chitosan as a promising natural compound to enhance potential physiological responses in plant: A review. Indian Journal of Plant Physiology, 2015, 20: 1-9
|
[2] |
蒋挺大. 壳聚糖. 北京: 化学工业出版社, 2001: 1-2, 13-14, 87-88
|
[3] |
张凤银, 雷刚, 胡斌. 壳聚糖对扁豆种子萌发过程中盐胁迫的缓解作用. 江汉大学学报: 自然科学版, 2016, 44(6): 485-489
|
[4] |
潘丽芹, 韦海忠, 张浩, 等. 壳聚糖对盐胁迫下白三叶种子萌发及幼苗生长的缓解作用. 分子植物育种, 2018, 16(11): 3740-3744
|
[5] |
王玉萍, 于丹, 李成, 等. 壳聚糖对盐胁迫下小麦种子萌发及幼苗生理特性的影响. 干旱地区农业研究, 2016, 34(1): 180-185
|
[6] |
丁振中, 曾哲灵, 龚劲松, 等. NaCl胁迫下壳寡糖对油菜苗生长的影响. 生物化工, 2018, 4(3): 29-33
|
[7] |
Gu LQ. Effects of chitosan on physiological characteristics of tomato seedlings under salt stress. Journal of Agricultural Science and Technology, 2012, 13: 551-553
|
[8] |
宋士清, 刘微, 郭世荣, 等. 化学诱抗剂诱导黄瓜抗盐性及其机理. 应用生态学报, 2006, 17(10): 1871-1876
|
[9] |
王聪, 杨恒山, 董永义, 等. 外源壳聚糖对NaCl胁迫下菜用大豆光合作用及荧光特性的影响. 西北植物学报, 2015, 35(6): 1198-1205
|
[10] |
王聪, 董永义, 贾俊英, 等. NaCl胁迫下外源壳聚糖对菜用大豆叶绿体抗氧化系统的影响. 植物营养与肥料学报, 2016, 22(5): 1356-1365
|
[11] |
王聪, 徐志伟. 壳聚糖对NaCl胁迫下菜用大豆结瘤固氮的影响. 植物营养与肥料学报, 2020, 26(1): 185-190
|
[12] |
Xie X, Yan YL, Liu T, et al. Data-independent acquisition proteomic analysis of biochemical factors in rice seedlings following treatment with chitosan oligosaccharides. Pesticide Biochemistry and Physiology, 2020, 170, doi: 10.1016/j.pestbp.2020.104681
|
[13] |
刘晓霞. 低分子量壳聚糖促进甘蔗生长及抗旱性的蛋白质组学分析. 硕士论文. 南宁: 广西民族大学, 2014
|
[14] |
宋江峰. 低温与精胺对菜用大豆贮藏品质的影响及代谢组学研究. 博士论文. 南京: 南京农业大学, 2014
|
[15] |
Wang LX, Liang WY, Xing JH, et al. Dynamics of chloroplast proteome in salt-stressed mangrove Kandelia candel (L.) Druce. Journal of Proteome Research, 2013, 12: 5124-5136
|
[16] |
Rahma G, Arafet M, Walid D, et al. Combined effects of NaCl and Cd2+ stress on the photosynthetic apparatus of Thellungiella salsuginea. Biochimica et Biophysica Acta-Bioenergetics, 2018, 1859: 1274-1287
|
[17] |
Parida AK, Das AB, Mittra B. Effects of NaCl stress on the structure, pigment complex composition, and photosynthetic activity of mangrove Bruguiera parviflora chloroplasts. Photosynthetica, 2003, 41: 191-200
|
[18] |
Sudhir PR, Pogoryelov D, Kovacs L, et al. The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the cyanobacterium Spiru-lina platensis. Journal of Biochemistry and Molecular Biology, 2005, 38: 481-485
|
[19] |
周峰, 华春, 周泉澄, 等. 高温胁迫对菠菜类囊体膜蛋白亚基和光谱特征的影响. 南京师范大学学报: 自然科学版, 2010, 33(1): 98-101
|
[20] |
Stewart DH, Brudvig GW. Cytochrome b559 of photosystem Ⅱ. Biochimica et Biophysica Acta-Bioenergetics, 1998, 1367: 63-87
|
[21] |
Josef K, Veronika R, Christian MB, et al. Accumulation of the D2 protein is a key regulatory step for assembly of the photosystem Ⅱ reaction center complex in Synechocystis PCC 6803. Journal of Biological Chemistry, 2004, 279: 48620-48629
|
[22] |
Shuvalov VA. Composition and function of cytochrome b559 in reaction centers of photosystem Ⅱ of green plants. Journal of Bioenergitcs and Biomembranes, 1994, 26: 619-626
|
[23] |
Yi X, McChargue M, Laborde S, et al. The manganese-stabilizing protein is required for photosystem Ⅱ assembly/stability and photoautotrophy in higher plants. Journal of Biological Chemistry, 2005, 280: 16170-16174
|
[24] |
Lundin B, Hansson M, Schoefs B, et al. The Arabidopsis PsbO2 protein regulates dephosphorylation and turnover of the photosystem Ⅱ reaction centre D1 protein. The Plant Journal, 2007, 49: 528-539
|
[25] |
Yi X, Hargett SR, Frankel LK, et al. The PsbQ protein is required in Arabidopsis for photosystem Ⅱ assembly/stability and photoautotrophy under low light conditions. Journal of Biological Chemistry, 2006, 281: 26260-26267
|
[26] |
Bouges-Boequet B. Detection of a new protein in the electrogenic loop of green algae. FEBS Letters, 1980, 117: 54-58
|
[27] |
Ashraf M, Harris PJC. Photosynthesis under stressful environments: An overview. Photosynthetica, 2013, 51: 163-190
|
[28] |
Antonkine ML, Golbeck JH. Molecular interactions of the stromal subunit PsaC with the PsaA/PsaB hete-rodimer// Golbeck JH, ed. Photosystem Ⅰ: Advances in Photosynthesis and Respiration. Dordrecht, the Netherlands: Springer, 2006: 79-98
|
[29] |
Haldrup A, Jensen PE, Scheller HV. The low molecular mass subunits in higher plant photosystem Ⅰ// Golbeck JH, ed. Photosystem Ⅰ: Advances in Photosynthesis and Respiration. Dordrecht, the Netherlands: Springer, 2006: 139-154
|
[30] |
Haldrup A, Lunde C, Scheller HV. Arabidopsis thaliana plants lacking the PSI-D subunit of photosystem Ⅰ suffer photoinhibition, have unstable photosystem Ⅰ comp-lexes, and altered redox homeostasis in the chloroplast stroma. Journal of Biological Chemistry, 2003, 278: 33276-33283
|
[31] |
Montesano M, Scheller HV, Wettstein R, et al. Down-regulation of photosystem Ⅰ by Erwinia carotovora-derived elicitors correlates with H2O2 accumulation in chloroplasts of potato. Molecular Plant Pathology, 2004, 5: 115-123
|
[32] |
Lintala M, Allahverdiyeva Y, Kidron H, et al. Structural and functional characterization of ferredoxin-NADP+-oxidoreductase using knock-out mutants of Arabidopsis. The Plant Journal, 2007, 49: 1041-1052
|
[33] |
Liu HM, Fang L, Che YS, et al. Protein expression patterns in two Spiraea species in response to cold treatment. Molecular Biology Reports, 2014, 41: 4533-4547
|
[34] |
Nowitzki U, Wyrich R, Westhoff P, et al. Cloning of the amphibolic Calvin cycle/OPPP enzyme o-ribulose-5-phosphate 3-epimerase (EC 5.1.3.1) from spinach chloroplasts: Functional and evolutionary aspects. Plant Molecular Biology, 1995, 29: 1279-1291
|
[35] |
Cui L, Lu Y, Li Y, et al. Overexpression of glycolate oxidase confers improved photosynthesis under high light and high temperature in rice. Frontiers in Plant Science, 2016, 7: 1165, doi: 10.3389/fpls.2016.01165
|
[36] |
Lu Y, Li Y, Yang Q, et al. Suppression of glycolate oxidase causes glyoxylate accumulation that inhibits photosynthesis through deactivating Rubisco in rice. Physiologia Plantarum, 2014, 150: 463-476
|