应用生态学报 ›› 2022, Vol. 33 ›› Issue (3): 613-622.doi: 10.13287/j.1001-9332.202203.021
• 全球变化对生态脆弱区资源环境承载力的影响专栏 • 上一篇 下一篇
张添佑1, 陈智2,3, 温仲明1, 于贵瑞2,3*
收稿日期:
2021-09-16
接受日期:
2021-12-09
出版日期:
2022-03-15
发布日期:
2022-09-15
通讯作者:
* E-mail: yugr@igsnrr.ac.cn
作者简介:
张添佑, 男, 1991年生, 副教授。主要从事宏观生态学研究。E-mail: t_youzhang@nwafu.edu.cn
基金资助:
ZHANG Tian-you1, CHEN Zhi2,3, WEN Zhong-ming1, YU Gui-rui2,3*
Received:
2021-09-16
Accepted:
2021-12-09
Online:
2022-03-15
Published:
2022-09-15
摘要: 随着气候变化和人类活动对陆地生态系统双重扰动的不断加剧,越来越多的研究已经意识到生态系统结构和功能会发生难以预知的突变,并且恢复起来需要很长时间。开发判别典型生态系统临界转换的早期预警模型及理解其生态学机制成为生态学研究的热点。目前,基于跨越多个时空尺度的理论和实验研究,提出了多种预警陆地生态系统临界转换的理论框架和指标体系。为了更深入理解和构建预警生态系统临界转换的理论框架,本文从临界转换的理论方法及生态学过程机制两方面梳理了生态系统临界转换的研究进展。研究认为,突变理论和临界慢化理论是预测和预警生态系统状态转换的基础理论方法;自组织理论和反馈机制是塑造生态系统多稳态的核心生态学机制。理解生物与环境多要素之间的级联关系网络,明确生态系统关键参数的输入与输出变量之间的平衡关系及作用机制,是构建生态系统临界转换的理论框架和模型的基础。这些理论认知可为生态系统灾变预警、生态修复及环境治理等研究提供参考。
张添佑, 陈智, 温仲明, 于贵瑞. 陆地生态系统临界转换理论及其生态学机制研究进展[J]. 应用生态学报, 2022, 33(3): 613-622.
ZHANG Tian-you, CHEN Zhi, WEN Zhong-ming, YU Gui-rui. Research advances in critical transition and its ecological mechanisms of terrestrial ecosystems.[J]. Chinese Journal of Applied Ecology, 2022, 33(3): 613-622.
[1] | Rockström J, Steffen W, Noone K, et al. A safe operating space for humanity. Nature, 2009, 461: 472-475 |
[2] | Steffen W, Richardson K, Rockström J, et al. Planetary boundaries: Guiding human development on a changing planet. Science, 2015, 347: 1-10 |
[3] | Hillebrand H, Donohue I, Harpole WS, et al. Thresholds for ecological responses to global change do not emerge from empirical data. Nature Ecology & Evolution, 2020, 4: 1502-1509 |
[4] | 于贵瑞, 徐兴良, 王秋凤, 等. 全球变化对生态脆弱区资源环境承载力的影响研究. 中国基础科学, 2017, 19(6): 19-23 |
[5] | 于贵瑞, 徐兴良, 王秋凤. 全球变化对生态脆弱区资源环境承载力影响的研究进展. 中国基础科学, 2020, 22(5): 16-20 |
[6] | Li D, Wu S, Liu L, et al. Vulnerability of the global terrestrial ecosystems to climate change. Global Change Biology, 2018, 24: 4095-4106 |
[7] | Zhang Y, Fueglistaler S. Mechanism for increasing tropical rainfall unevenness with global warming. Geophysical Research Letters, 2019, 46: 14836-14843 |
[8] | Sprenger M, Stumpp C, Weiler M, et al. The demographics of water: A review of water ages in the critical zone. Reviews of Geophysics, 2019, 57: 800-834 |
[9] | Scheffer M, Bascompte J, Brock WA, et al. Early-warning signals for critical transitions. Nature, 2009, 461: 53-59 |
[10] | Dakos V, Carpenter SR, van Nes EH, et al. Resilience indicators: Prospects and limitations for early warnings of regime shifts. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370: 20130263 |
[11] | Arani BM, Carpenter SR, Lahti L, et al. Exit time as a measure of ecological resilience. Science, 2021, 372: 1-9 |
[12] | Scheffer M, Carpenter S, Foley JA, et al. Catastrophic shifts in ecosystems. Nature, 2001, 413: 591-596 |
[13] | Berdugo M, Delgado-Baquerizo M, Soliveres S, et al. Global ecosystem thresholds driven by aridity. Science, 2020, 367: 787-790 |
[14] | Carpenter SR, Brock WA. Rising variance: A leading indicator of ecological transition. Ecology Letters, 2006, 9: 311-318 |
[15] | Dakos V, Scheffer M, van Nes EH, et al. Slowing down as an early warning signal for abrupt climate change. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105: 14308-14312 |
[16] | Andersen T, Carstensen J, Hernandez-Garcia E, et al. Ecological thresholds and regime shifts: Approaches to identification. Trends in Ecology & Evolution, 2009, 24: 49-57 |
[17] | Ratajczak Z, Carpenter SR, Ives AR, et al. Abrupt change in ecological systems: Inference and diagnosis. Trends in Ecology & Evolution, 2018, 33: 513-526 |
[18] | Lewontin R. The meaning of stability. Diversity and stability in ecological systems. Brookhaven Symposia in Biology, 1969, 22: 13-24 |
[19] | Holling CS. Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 1973, 4: 1-23 |
[20] | Dakos V, Matthews B, Hendry AP, et al. Ecosystem tipping points in an evolving world. Nature Ecology & Evolution, 2019, 3: 355-362 |
[21] | Thom R. Structural Stability and Morphogenesis. New York: Benjamin, 1972 |
[22] | May RM. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature, 1977, 269: 471-477 |
[23] | Scheffer M, Carpenter SR. Catastrophic regime shifts in ecosystems: Linking theory to observation. Trends in Ecology & Evolution, 2003, 18: 648-656 |
[24] | Clements CF, Ozgul A. Indicators of transitions in biological systems. Ecology Letters, 2018, 21: 905-919 |
[25] | Wissel C. A universal law of the characteristic return time near thresholds. Oecologia, 1984, 65: 101-107 |
[26] | Van Nes EH, Scheffer M. Slow recovery from perturbations as a generic indicator of a nearby catastrophic shift. The American Naturalist, 2007, 169: 738-747 |
[27] | Hu Z, Guo Q, Li S, et al. Shifts in the dynamics of productivity signal ecosystem state transitions at the biome-scale. Ecology Letters, 2018, 21: 1457-1466 |
[28] | 李典谟, 陈玉平. 突变论在生态系统分析中的应用. 生态学杂志, 1982, 1(4): 35-49 |
[29] | Knowlton N. Thresholds and multiple stable states in coral reef community dynamics. American Zoologist, 1992, 32: 674-682 |
[30] | Ratajczak Z, D'Odorico P, Nippert JB, et al. Changes in spatial variance during a grassland to shrubland state transition. Journal of Ecology, 2017, 105: 750-760 |
[31] | Walters CJ, Hilborn R. Adaptive control of fishing systems. Journal of the Fisheries Board of Canada, 1976, 33: 145-159 |
[32] | Wang R, Dearing JA, Langdon PG, et al. Flickering gives early warning signals of a critical transition to a eutrophic lake state. Nature, 2012, 492: 419-422 |
[33] | Su H, Wang R, Feng Y, et al. Long-term empirical evidence, early warning signals and multiple drivers of regime shifts in a lake ecosystem. Journal of Ecology, 2020, 109: 1-13 |
[34] | Henley S. Catastrophe theory models in geology. Journal of the International Association for Mathematical Geology, 1976, 8: 649-655 |
[35] | 符淙斌, 王强. 气候突变的定义和检测方法, 大气科学, 1992, 16(4): 482-493 |
[36] | 于渌, 郝柏林. 相变和临界现象. 北京: 科学出版社, 1984 |
[37] | Scheffer M, Hirota M, Holmgren M, et al. Thresholds for boreal biome transitions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109: 21384-21389 |
[38] | Scheffer M, Carpenter SR, Dakos V, et al. Generic indicators of ecological resilience: Inferring the chance of a critical transition. Annual Review of Ecology, Evolution, and Systematics, 2015, 46: 145-167 |
[39] | Willis KJ, Jeffers ES, Tovar C. What makes a terrestrial ecosystem resilient? Science, 2018, 359: 988-989 |
[40] | Ives AR. Measuring resilience in stochastic systems. Ecological Monographs, 1995, 65: 217-233 |
[41] | Kleinen T, Held H, Petschel-Held G. The potential role of spectral properties in detecting thresholds in the earth system: Application to the thermohaline circulation. Ocean Dynamics, 2003, 53: 53-63 |
[42] | Livina VN, Lenton TM. A modified method for detecting incipient bifurcations in a dynamical system. Geophysical Research Letters, 2007, 34: L03712 |
[43] | Liu Y, Kumar M, Katul GG, et al. Reduced resilience as an early warning signal of forest mortality. Nature Climate Change, 2019, 9: 880-885 |
[44] | Carpenter SR, Folke C. Ecology for transformation. Trends in Ecology & Evolution, 2006, 21: 309-315 |
[45] | Dakos V, Kéfi S, Rietkerk M, et al. Slowing down in spatially patterned ecosystems at the brink of collapse. The American Naturalist, 2011, 177: E153-E166 |
[46] | Veraart AJ, Faassen EJ, Dakos V, et al. Recovery rates reflect distance to a tipping point in a living system. Nature, 2012, 481: 357-359 |
[47] | Noy-Meir I. Stability of grazing systems: An application of predator-prey graphs. The Journal of Ecology, 1975, 63: 459-481 |
[48] | Kéfi S, Dakos V, Scheffer M, et al. Early warning signals also precede non-catastrophic transitions. Oikos, 2013, 122: 641-648 |
[49] | 张青. 突变论模型在生态系统研究中的应用. 北京林业大学学报, 1997, 19(4): 76-81 |
[50] | Verhulst PF. Mathematical research on the law of population growth. New Papers from the Royal Academy of Sciences and Belles-Lettres of Brussels, 1845, 18: 14-54. |
[51] | Monod J. The growth of bacterial cultures. Annual Review of Microbiology, 1949, 3: 371-394 |
[52] | Carpenter SR, Cole JJ, Pace ML, et al. Early warnings of regime shifts: A whole-ecosystem experiment. Science, 2011, 332: 1079-1082 |
[53] | Staver AC, Archibald S, Levin SA. The global extent and determinants of savanna and forest as alternative biome states. Science, 2011, 334: 230-232 |
[54] | 徐驰, 王海军, 刘权兴, 等. 生态系统的多稳态与突变. 生物多样性, 2020, 28(11): 1417-1430 |
[55] | Tsimring L, Levine H, Aranson I, et al. Aggregation patterns in stressed bacteria. Physical Review Letters, 1995, 75: 1859 |
[56] | van de Koppel J, Gascoigne JC, Theraulaz G, et al. Experimental evidence for spatial self-organization and its emergent effects in mussel bed ecosystems. Science, 2008, 322: 739-742 |
[57] | Mistr S, Bercovici D. A theoretical model of pattern formation in coral reefs. Ecosystems, 2003, 6: 61-74 |
[58] | Rietkerk M, Dekker SC, De Ruiter PC, et al. Self-organized patchiness and catastrophic shifts in ecosystems. Science, 2004, 305: 1926-1929 |
[59] | HilleRisLambers R, Rietkerk M, van den Bosch F, et al. Vegetation pattern formation in semi-arid grazing systems. Ecology, 2001, 82: 50-61 |
[60] | Klausmeier CA. Regular and irregular patterns in semiarid vegetation. Science, 1999, 284: 1826-1828 |
[61] | Camazine S, Deneubourg JL, Franks NR, et al. Self-organization in biological systems. Princeton, New Jersey: Princeton University Press, 2020 |
[62] | Franklin O, Harrison SP, Dewar R, et al. Organizing principles for vegetation dynamics. Nature Plants, 2020, 6: 444-453 |
[63] | Turing A. The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 1952, 237: 37-72 |
[64] | Liu QX, Rietkerk M, Herman PMJ, et al. Phase separation driven by density-dependent movement: A novel mechanism for ecological patterns. Physics of Life Reviews, 2016, 19: 107-121 |
[65] | Cahn JW, Hilliard JE. Free energy of a nonuniform system. I. Interfacial free energy. Journal of Chemical Physics, 1958, 28: 258-267 |
[66] | 葛振鹏, 刘权兴. 整体大于部分之和: 生态自组织斑图及其涌现属性. 生物多样性, 2020, 28(11): 1431-1443 |
[67] | Kéfi S, Holmgren M, Scheffer M. When can positive interactions cause alternative stable states in ecosystems? Functional Ecology, 2016, 30: 88-97 |
[68] | Zelnik YR, Meron E, Bel G. Gradual regime shifts in fairy circles. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112: 12327-12331 |
[69] | Nathan J, Osem Y, Shachak M, et al. Linking functional diversity to resource availability and disturbance: A mechanistic approach for water-limited plant communities. Journal of Ecology, 2016, 104: 419-429 |
[70] | Zhao LX, Zhang K, Siteur K, et al. Fairy circles reveal the resilience of self-organized salt marshes. Science Advances, 2021, 7: 1-12 |
[71] | Lerdau M. A positive feedback with negative consequences. Science, 2007, 316: 212-213 |
[72] | van der Heide T, van Nes EH, van Katwijk MM, et al. Positive feedbacks in seagrass ecosystems-evidence from large-scale empirical data. PLoS One, 2011, 6(1): e16504 |
[73] | Holling CS, Gunderson LH. Panarchy: Understanding Transformations in Human and Natural Systems. Washington, DC: Island Press, 2002 |
[74] | Morton T. Dark Ecology. New York: Columbia University Press, 2016 |
[75] | Scheffer M. Critical Transitions in Nature and Society. Princeton, NJ, USA: Princeton University Press, 2009 |
[76] | Staal A, van Nes EH, Hantson S, et al. Resilience of tropical tree cover: The roles of climate, fire, and herbivory. Global Change Biology, 2018, 24: 5096-5109 |
[77] | 冯剑丰, 王洪礼, 朱琳. 生态系统多稳态研究进展. 生态环境学报, 2009, 18(4): 1553-1559 |
[78] | Holmgren M, Scheffer M, Huston MA. The interplay of facilitation and competition in plant communities. Ecology, 1997, 78: 1966-1975 |
[79] | Xu Z, Mason JA, Xu C, et al. Critical transitions in Chinese dunes during the past 12,000 years. Science Advances, 2020, 6: 1-10 |
[80] | Chen N, Jayaprakash C, Yu K, et al. Rising variability, not slowing down, as a leading indicator of a stochastically driven abrupt transition in a dry land ecosystem. The American Naturalist, 2018, 191: E1-E14 |
[1] | 孙国栋, 曾晓东, 崔明. 生态脆弱区生态系统状态演变分析的若干数学方法 [J]. 应用生态学报, 2022, 33(3): 638-647. |
[2] | 于贵瑞, 张黎, 何洪林, 杨萌. 大尺度陆地生态系统动态变化与空间变异的过程模型及模拟系统 [J]. 应用生态学报, 2021, 32(8): 2653-2665. |
[3] | 于贵瑞, 牛书丽, 李发东, 张雷明, 陈卫楠. 陆地生态系统环境控制实验的研究方法及技术体系 [J]. 应用生态学报, 2021, 32(7): 2275-2289. |
[4] | 于贵瑞, 张雷明, 张扬建, 杨萌. 大尺度陆地生态系统状态变化及其资源环境效应的立体化协同联网观测 [J]. 应用生态学报, 2021, 32(6): 1903-1918. |
[5] | 吴玉琴, 邱春琦, 徐嘉仪, 李玉凤, 刘红玉, 王刚. 苏北平原灌区小水利工程对沟渠水文连通结构的影响 [J]. 应用生态学报, 2021, 32(5): 1653-1662. |
[6] | 于贵瑞, 陈智, 杨萌, 王秋凤. 大尺度陆地生态系统科学研究的理论基础及其技术体系之探讨 [J]. 应用生态学报, 2021, 32(2): 377-391. |
[7] | 范珍珍, 王鑫, 王超, 白娥. 整合分析氮磷添加对土壤酶活性的影响 [J]. 应用生态学报, 2018, 29(4): 1266-1272. |
[8] | 李蕙, 袁琳, 张利权, 李伟, 李诗华, 赵志远. 长江口滨海湿地潮间带生态系统的多稳态特征 [J]. 应用生态学报, 2017, 28(1): 327-336. |
[9] | 王丽芹1,2,3,齐玉春1,2 **,董云社1,2,彭琴1,2,郭树芳1,2,3,贺云龙1,2,3,闫钟清1,2,3. 冻融作用对陆地生态系统氮循环关键过程的影响效应及其机制 [J]. 应用生态学报, 2015, 26(11): 3532-3544. |
[10] | 车明亮1,2,陈报章1**,王瑛1,2,郭祥云3. 全球植被动力学模型研究综述 [J]. 应用生态学报, 2014, 25(1): 263-271. |
[11] | 柳淑蓉,胡荣桂**,蔡高潮. UV-B辐射增强对陆地生态系统碳循环的影响 [J]. 应用生态学报, 2012, 23(07): 1992-1998. |
[12] | 陈克亮,时亚楼,林志兰,王金坑,欧阳玉蓉,蒋金龙. 基于突变理论的近岸海域生态风险综合评价方法——以罗源湾为例 [J]. 应用生态学报, 2012, 23(01): 213-221. |
[13] | 王瑞燕1;赵庚星1;姜曙千1;王瑷玲1;王静2. 基于遥感及突变理论的生态环境脆弱性时空演变——以黄河三角洲垦利县为例 [J]. 应用生态学报, 2008, 19(08): 1782-1788 . |
[14] | 毛留喜1;孙艳玲2,3;延晓冬2. 陆地生态系统碳循环模型研究概述 [J]. 应用生态学报, 2006, 17(11): 2189-2195 . |
[15] | 杨景成, 韩兴国, 黄建辉, 潘庆民. 土地利用变化对陆地生态系统碳贮量的影响 [J]. 应用生态学报, 2003, (8): 1385-1390. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||