[1] Flannigan M, Stock B, Turetsky M, et al. Impacts of climate change on fire activity and fire management in the circumboreal forest. Global Change Biology, 2010, 15: 549-560 [2] Turetsky MR,Kane ES, Harden JW, et al. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nature Geoscience, 2010, 4: 27-31 [3] 郭福涛, 胡海清, 马志海, 等. 不同模型对拟合大兴安岭林火发生与气象因素关系的适用性. 应用生态学报, 2010, 21(1):159-164 [4] Lozano FJ, Suarez SS, Kelly M,et al. A multi-scale approach for modeling fire occurrence probability using satellite data and classification trees: A case study in a mountainous Mediterranean region. Remote Sensing of Environment, 2008, 112: 708-719 [5] 孙龙, 尚喆超, 胡海清. Poisson回归模型和负二项回归模型在林火预测领域的应用. 林业科学, 2012, 48(5): 126-129 [6] Mallinis G, Petrila M, Mitsopoulos L,et al. Geospatial patterns and drivers of forest fire occurrence in Romania. Applied Spatial Analysis and Policy, 2019, 12: 773-795 [7] 郭福涛, 苏漳文, 马祥庆, 等. 大兴安岭塔河地区雷击火发生驱动因子综合分析. 生态学报, 2015, 35(19): 6439-6448 [8] Martínez FJ, Chuvieco E, Koutsias N. Modelling long-term fire occurrence factors in Spain by accounting for local variations with geographically weighted regression. Natural Hazards and Earth System Science, 2013, 13:311-327 [9] Rodrigues M, de la Riva J, Fotheringham S. Modeling the spatial variation of the explanatory factors of human-caused wildfires in Spain using geographically weighted logistic regression. Applied Geography, 2014, 48: 52-63 [10] Blozis SA, Harring JR. Fitting nonlinear mixed-effects models with alternative residual covariance structures. Sociological Methods & Research, 2021, 50: 531-566 [11] Groom JD, Hann DW, Temesgen H. Evaluation of mixed-effects models for predicting Douglas-fir mortality. Forest Ecology and Management, 2012, 276: 139-145 [12] Liu X, Hao YS, Widagdo FRA, et al. Predicting height to crown base of Larix olgensis in northeast China using UAV-LiDAR data and nonlinear mixed effects models. Remote Sensing, 2021, 13: 1834 [13] Zhou X, Chen Q, Sharma RP, et al. A climate sensitive mixed-effects diameter class mortality model for Prince Rupprecht larch (Larix gmelinii var. principis-rupprechtii) in northern China. Forest Ecology and Management, 2021, 491: 119091 [14] Hegeman EE, Dickson BG, Eochmann LJ. Probabilistic models of fire occurrence across National Park Service units within the Mojave Desert Network, USA. Landscape Ecology, 2014, 29: 1587-1600 [15] Drever CR, Drever MC, Messier C, et al. Fire and the relative roles of weather, climate and landscape characteristics in the Great Lakes-St. Lawrence forest of Canada. Journal of Vegetation Science, 2008, 19: 57-66 [16] Xiao YD, Zhang XQ, Ji P. Modeling forest fire occurrences using Count-Data mixed models in Qiannan autonomous prefecture of Guizhou Provincein China. PLoS One, 2015, 10(7): e0120621 [17] 国家林业和草原局. 中国林业和草原统计年鉴2018. 北京: 中国林业出版社, 2018: 4-5 [18] 梁慧玲, 林玉蕊, 杨光, 等. 基于气象因子的随机森林算法在塔河地区林火预测中的应用. 林业科学, 2016, 52(1): 89-98 [19] Guo FT, Su ZW, Tigabu M, et al. Spatial modelling of fire drivers in urban-forest ecosystems in China. Forests, 2017, 8: 180 [20] 蔡奇均, 曾爱聪, 苏漳文, 等. 基于Logistic回归模型的浙江省林火发生驱动因子分析. 西北农林科技大学学报:自然科学版, 2020, 48(2):102-109 [21] Carvalho A, Flannigan MD, Logan K, et al. Fire activity in Portugal and its relationship to weather and the Canadian Fire Weather Index system. International Journal of Wildland Fire, 2008, 17: 328-338 [22] 李春明. 基于广义线性混合效应模型的蒙古栎林单木枯损建模及影响因子分析. 林业科学研究, 2020, 33(6): 105-113 [23] Rawlings JO, Pantula SG, Dickey DA. Applied Regression Analysis: A Research Tool.New York: Springer, 1998 [24] Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inferenceand Prediction. New York: Springer, 2001 [25] Burnham KP, Anderson DR. Model Selection and Multi-model Inference: A Practical Information-theoretic Approach. New York: Springer, 2002 [26] He ZM, Li LZ, Huang ZM, et al. Quantum-enhanced feature selection with forward selection and backward elimination. Quantum Information Processing, 2018, 17: 154 [27] 曾爱聪, 蔡奇均, 苏漳文, 等. 基于MODIS卫星火点的浙江省林火季节变化及驱动因子. 应用生态学报, 2020, 31(2): 399-406 [28] 苏漳文, 刘爱琴, 梁慧玲, 等. 基于气象因子的福建省森林火险预测模型. 森林与环境学报, 2015, 35(4): 370-376 [29] Wilgen BW, Biggs HC, Regan SP, et al. A fire history of the savanna ecosystems in the Kruger National Park, South. South African Journal of Science, 2000, 96: 167-178 [30] Spessa A, McBeth B, Prentice C. Relationships among fire frequency, rainfall and vegetation patterns in the wet-dry tropics of northern Australia: An analysis based on NOAA-AVHRR data. Global Ecology and Biogeography, 2005, 14: 439-454 [31] 杜军凯. 考虑垂直地带性的山区分布式水文模拟与应用. 博士论文. 北京: 中国水利水电科学研究院, 2019 [32] 国家林业和草原局. 全国森林防火规划(2016—2025年) [EB/OL]. (2016-12-29) [2021-07-06]. https://www.ndrc.gov.cn/fggz/fzzlgh/gjjzxgh/201705/W020191104624246431007.pdf [33] 王涛, 董利虎, 李凤日. 基于混合效应的杂种落叶松人工幼龄林单木枯损模型. 北京林业大学学报, 2018, 40(10): 1-12 [34] 李春明, 赵丽芳, 李利学. 基于混合效应模型和零膨胀模型方法的蒙古栎林分水平枯损模型. 林业科学, 2019, 55(11):27-36 [35] Guo FT, Zhang LJ, Jin S, et al. Modeling anthropogenic fire occurrence in the boreal forest of China using logistic regression and random forests. Forests, 2016, 7: 250 |