[1] 李小雁. 干旱地区土壤-植被-水文耦合、响应与适应机制. 中国科学: 地球科学, 2011, 41(12): 1721-1730 [2] 王新平, 李新荣, 康尔泗, 等. 腾格里沙漠东南缘人工植被区降水入渗与再分配规律研究. 生态学报, 2003, 23(6): 1234-1241 [3] Belnap J, Weber B, Büdel B. Biological soil crusts as an organizing principle in drylands// Weber B, Büdel B, Belnap J, eds. Biological Soil Crusts: An Organizing Principle in Drylands. Berlin: Springer-Verlag, 2016: 3-13 [4] Xiao B, Wang QH, Zhao YG, et al. Artificial culture of biological soil crusts and its effects on overland flow and infiltration under simulated rainfall. Applied Soil Ecology, 2011, 48: 11-17 [5] 李渊博, 李胜龙, 肖波, 等. 黄土高原藓结皮覆盖土壤导水性能和水流特征. 干旱区研究, 2020, 37(2): 390-399 [6] Eldridge DJ, Bowker MA, Maestre FT, et al. Interactive effects of three ecosystem engineers on infiltration in a semi-arid Mediterranean grassland. Ecosystems, 2010, 13: 499-510 [7] Xiao B, Sun FH, Hu KL, et al. Biocrusts reduce surface soil infiltrability and impede soil water infiltration under tension and ponding conditions in dryland ecosystem. Journal of Hydrology, 2019, 568: 792-802 [8] Belnap J, Wilcox BP, Van Scoyoc MW, et al. Successional stage of biological soil crusts: An accurate indicator of ecohydrological condition. Ecohydrology, 2013, 6: 474-482 [9] Belnap J, Büdel B, Lange OL. Biological Soil Crusts: Characteristics and Distribution. Berlin: Springer-Verlag, 2001: 3-30 [10] Wang SS, Liu BY, Zhao YG, et al. Determination of the representative elementary area (REA) of biocrusts: A case study from the Hilly Loess Plateau region, China. Geoderma, 2021, 406: 115502 [11] 查轩, 唐克丽. 水蚀风蚀交错带小流域生态环境综合治理模式研究. 自然资源学报, 2000, 15(1): 97-100 [12] 王芳芳, 肖波, 孙福海, 等. 黄土高原生物结皮覆盖对风沙土和黄绵土溶质运移的影响. 应用生态学报, 2020, 31(10): 3404-3412 [13] 李林, 赵允格, 王一贺, 等. 不同类型生物结皮对坡面产流特征的影响. 自然资源学报, 2015, 30(6): 1013-1023 [14] 肖波, 赵允格, 邵明安. 陕北水蚀风蚀交错区两种生物结皮对土壤理化性质的影响. 生态学报, 2007, 27(11): 4662-4670 [15] Belnap J, Lange OL. Biological Soil Crusts: Structure, Function, and Management. Berlin: Springer-Verlag, 2003 [16] 杨巧云, 赵允格, 包天莉, 等. 黄土丘陵区不同类型生物结皮下的土壤生态化学计量特征. 应用生态学报, 2019, 30(8): 2699-2706 [17] 王媛, 赵允格, 姚春竹, 等. 黄土丘陵区生物土壤结皮表面糙度特征及影响因素. 应用生态学报, 2014, 25(3): 647-656 [18] 范文波, 李小娟. 涂膜法测定黄土结皮容重. 山西水土保持科技, 2001(3): 9-10 [19] 杨凯, 赵允格, 马昕昕. 黄土丘陵区生物土壤结皮层水稳性. 应用生态学报, 2012, 23(1): 173-177 [20] 胡顺军, 田长彦, 宋郁东, 等. 土壤渗透系数测定与计算方法的探讨. 农业工程学报, 2011, 27(5): 68-72 [21] Gao LQ, Bowker MA, Xu MX, et al. Biological soil crusts decrease erodibility by modifying inherent soil properties on the Loess Plateau, China. Soil Biology and Biochemistry, 2017, 105: 49-58 [22] 雷廷武, 毛丽丽, 李鑫, 等. 土壤入渗性能的线源入流测量方法研究. 农业工程学报, 2007, 23(1): 1-5 [23] 黄昌勇. 土壤学. 北京: 中国农业出版社, 2000: 110-118 [24] 张子辉, 赵允格, 谷康民, 等. 线源入流入渗法在生物结皮渗透性研究中的应用. 水土保持学报, 2020, 34(1): 128-134 [25] Chamizo S, Cantón Y, Rodríguez-Caballero E, et al. Biocrusts positively affect the soil water balance in semiarid ecosystems. Ecohydrology, 2016, 9: 1208-1221 [26] 李守中, 肖洪浪, 宋耀选, 等. 腾格里沙漠人工固沙植被区生物土壤结皮对降水的拦截作用. 中国沙漠, 2002, 22(6): 612-616 [27] 李胜龙, 肖波, 孙福海. 黄土高原干旱半干旱区生物结皮覆盖土壤水汽吸附与凝结特征. 农业工程学报, 2020, 36(15): 111-119 [28] Arthur E, Tuller M, Moldrup P, et al. Applicability of the Guggenheim-Anderson-Boer water vapour sorption model for estimation of soil specific surface area. Euro-pean Journal of Soil Science, 2018, 69: 245-255 [29] Menon M, Yuan Q, Jia X, et al. Assessment of physical and hydrological properties of biological soil crusts using X-ray microtomography and modeling. Journal of Hydro-logy, 2011, 397: 47-54 [30] 王一贺, 赵允格, 李林, 等. 黄土高原不同降雨量带退耕地植被-生物结皮的分布格局. 生态学报, 2016, 36(2): 377-386 |