[1] Giacometti C, Mazzon M, Cavani L, et al. A nitrification inhibitor, nitrapyrin, reduces potential nitrate leaching through soil columns treated with animal slurries and anaerobic digestate. Agronomy, 2020, 10: 865 [2] Giltrap DL, Kirschbaum MUF, Liang LYL. The potential effectiveness of four different options to reduce environmental impacts of grazed pastures: A model-based assessment. Agricultural Systems, 2021, 186: 102960 [3] Castellano-Hinojosa A, Gonzalez-Lopez J, Vallejo A, et al. Effect of urease and nitrification inhibitors on ammonia volatilization and abundance of N-cycling genes in an agricultural soil. Journal of Plant Nutrition and Soil Science, 2020, 183: 99-109 [4] Wu D, Zhang YX, Dong G, et al. The importance of ammonia volatilization in estimating the efficacy of nitrification inhibitors to reduce N2O emissions: A global meta-analysis. Environmental Pollution, 2021, 271: 116365 [5] Osburn ED, Barrett JE. Abundance and functional importance of complete ammonia-oxidizing bacteria (comammox) versus canonical nitrifiers in temperate forest soils. Soil Biology and Biochemistry, 2020, 145: 107801 [6] 李红强, 姚荣江, 杨劲松, 等. 盐渍化对农田氮素转化过程的影响机制和增效调控途径. 应用生态学报, 2020, 31(11): 3915-3924 [7] 徐婷婷, 郑俊强, 韩士杰, 等. 长白山阔叶红松林土壤氮转化过程对长期施氮和降水变化的响应. 应用生态学报, 2018, 29(9): 2797-2807 [8] Cai FF, Luo PY, Yang JF, et al. Effect of long-term fertilization on ammonia-oxidizing microorganisms and nitrification in brown soil of northeast China. Frontiers in Microbiology, 2021, 11: 622454 [9] Zhang Q, Li Y, He Y, et al. Nitrosospira cluster 3-like bacterial ammonia oxidizers and nitrospira-like nitrite oxidizers dominate nitrification activity in acidic terrace paddy soils. Soil Biology and Biochemistry, 2019, 131: 229-237 [10] Gao SJ, Zhou GP, Liao YL, et al. Contributions of ammonia-oxidising bacteria and archaea to nitrification under long-term application of green manure in alkaline paddy soil. Geoderma, 2020, 374: 114419 [11] Zhong WH, Cai ZC, Zhang H. Effects of long-term application of inorganic fertilizers on biochemical properties of a rice-planting red soil. Pedosphere, 2007, 17: 419-428 [12] 吴克宁, 赵瑞. 土壤质地分类及其在我国应用探讨. 土壤学报, 2019, 56(1): 227-241 [13] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999: 22-290 [14] Eisenhauer N, Bowker MA, Grace JB, et al. From patterns to causal understanding: Structural equation mode-ling (SEM) in soil ecology. Pedobiologia, 2015, 58: 65-72 [15] 中华人民共和国国家标准. 耕地质量等级[EB/OL]. (2016-12-30) [2021-12-18]. http://c.gb688.cn/bzgk/gb/showGb?type=online&hcno=7A4B6AOE4-EB682326EFF26C338F10698 [16] 刘广明, 杨劲松, 姜艳. 江苏典型滩涂区地下水及土壤的盐分特征研究. 土壤, 2005, 37(2): 163-168 [17] 王遵亲, 祝寿泉, 俞仁培, 等. 中国盐渍土. 北京: 科学出版社, 1993: 130-136 [18] 卢纹岱. SPSS for Windows 统计分析. 北京: 电子工业出版社, 2006: 267-280 [19] 吴明隆. 结构方程模型——方法与实务应用. 重庆: 重庆大学出版社, 2009: 24-27 [20] Akhtar M, Hussain F, Ashraf MY, et al. Influence of salinity on nitrogen transformations in soil. Communications in Soil Science and Plant Analysis, 2012, 43: 1674-1683 [21] Guo HJ, Ma LJ, Liang YC, et al. Response of ammonia-oxidizing bacteria and archaea to long-term saline water irrigation in alluvial grey desert soils. Scientific Reports, 2020, 10: 489 [22] Li XR, Xiao YP, Ren WW, et al. Abundance and composition of ammonia-oxidizing bacteria and archaea in different types of soil in the Yangtze River estuary. Journal of Zhejiang University-Science B, 2012, 13: 769-782 [23] Li YW, Xu JZ, Liu XY, et al. Nitrification inhibitor DMPP offsets the increase in N2O emission induced by soil salinity. Biology and Fertility of Soils, 2020, 56: 1211-1217 [24] 周慧, 史海滨, 张文聪, 等. 有机无机氮配施对不同程度盐渍土硝化和反硝化作用的影响. 环境科学, 2021, 42(10): 5010-5020 [25] Yao RJ, Yang JS, Wang XP, et al. Response of soil characteristics and bacterial communities to nitrogen fertilization gradients in a coastal salt-affected agroecosystem. Land Degradation & Development, 2021, 32: 338-353 [26] Yao RJ, Yang JS, Zhu W, et al. Impact of crop cultivation, nitrogen and fulvic acid on soil fungal community structure in salt-affected alluvial fluvo-aquic soil. Plant and Soil, 2021, 464: 539-558 [27] Zeng WZ, Xu C, Wu JW, et al. Effect of salinity on soil respiration and nitrogen dynamics. Ecological Chemistry and Engineering S, 2013, 20: 519-530 [28] Zhou MH, Butterbach-Bahl K, Vereecken H, et al. A meta-analysis of soil salinization effects on nitrogen pools, cycles and fluxes in coastal ecosystems. Global Change Biology, 2017, 23: 1338-1352 [29] Li ZL, Zeng ZQ, Tian DS, et al. Global patterns and controlling factors of soil nitrification rate. Global Change Biology, 2020, 26: 4147-4157 [30] 刘君政, 王鹏, 肖汉玉, 等. 中国陆地生态系统土壤氮矿化速率和硝化速率及影响因素——基于文献数据的统计分析. 生态学报, 2020, 40(12): 4207-4218 [31] 王萍萍, 段英华, 徐明岗, 等. 不同肥力潮土硝化潜势及其影响因素. 土壤学报, 2019, 56(1): 124-134 [32] Wessen E, Nyberg K, Jansson JK, et al. Responses of bacterial and archaeal ammonia oxidizers to soil organic and fertilizer amendments under long-term management. Applied Soil Ecology, 2010, 45: 193-200 [33] Shan ZJ, Yin Z, Yang H, et al. Long-term cultivation of fruit plantations decreases mineralization and nitrification rates in calcareous soil in the karst region in Southwes-tern China. Forests, 2020, 11: 1282 [34] Xie Y, Yang L, Zhu TB, et al. Rapid recovery of nitrogen retention capacity in a subtropical acidic soil follo-wing afforestation. Soil Biology and Biochemistry, 2018, 120: 171-180 [35] 刘敏, 刘爱菊, 李梦红, 等. 土壤理化性质与土壤硝化势相关性研究. 山东理工大学学报: 自然科学版, 2012, 26(5): 100-103 [36] 赵伟烨, 王智慧, 曹彦强, 等. 石灰性紫色土硝化作用及硝化微生物对不同氮源的响应. 土壤学报, 2018, 55(2): 479-489 [37] Duan M, House J, Liu Y, et al. Contrasting responses of gross and net nitrogen transformations to salinity in a reclaimed boreal forest soil. Biology and Fertility of Soils, 2018, 54: 385-395 [38] Jia J, Bai JH, Gao HF, et al. Different effects of NaCl and Na2SO4 on soil net nitrogen mineralization in coastal wetlands. Ecotoxicology and Environmental Safety, 2020, 199: 110678 |