[1] Zhang GP, Yan JJ, Zhu XT, et al. Spatio-temporal varia-tion in grassland degradation and its main drivers, based on biomass: Case study in the Altay Prefecture, China. Global Ecology and Conservation, 2019, 20: e723
[2] Conant RT, Paustian K, Elliott ET. Grassland management and conversion into grassland: Effects on soil carbon. Ecological Applications, 2001, 11: 343-355
[3] Scurlock J, Hall DO. The global carbon sink: A grassland perspective. Global Change Biology, 1998, 4: 229-233
[4] 陈佐忠, 汪诗平. 中国典型草原生态系统. 北京: 科学出版社, 2000
[5] Conant RT. Grassland Soil Organic Carbon Stocks: Status, Opportunities, Vulnerability. Berlin: Springer, 2012: 275-548
[6] 张扬建, 朱军涛, 沈若楠, 等. 放牧对草地生态系统影响的研究进展. 植物生态学报, 2020, 44(5): 553-564
[7] Bardgett DR, Bullock MJ, Lavorel P, et al. Combatting global grassland degradation. Nature Reviews Earth & Environment, 2021, 2: 720-735
[8] Lehnert LW, Meyer H, Meyer N, et al. A hyperspectral indicator system for rangeland degradation on the Tibetan Plateau: A case study towards spaceborne monitoring. Ecological Indicators, 2014, 39: 54-64
[9] 李军豪, 杨国靖, 王少平. 青藏高原区退化高寒草甸植被和土壤特征. 应用生态学报, 2020, 31(6): 2109-2118
[10] Cao JJ, Adamowski JF, Deo RC, et al. Grassland degradation on the Qinghai-Tibetan Plateau: Reevaluation of causative factors. Rangeland Ecology & Management, 2019, 72: 988-995
[11] Harris RB. Rangeland degradation on the Qinghai-Tibetan plateau: A review of the evidence of its magnitude and causes. Journal of Arid Environments, 2010, 74: 1-12
[12] Nakano T, Bavuudorj G, Iijima Y, et al. Quantitative evaluation of grazing effect on nomadically grazed grassland ecosystems by using time-lapse cameras. Agriculture, Ecosystems & Environment, 2020, 287: 106685
[13] 摆万奇, 张镱锂, 谢高地, 等. 黄河源区玛多县草地退化成因分析. 应用生态学报, 2002, 13(7): 823-826
[14] Piñeiro G, Paruelo JM, Oesterheld M, et al. Pathways of grazing effects on soil organic carbon and nitrogen. Rangeland Ecology & Management, 2010, 63: 109-119
[15] Hilker T, Natsagdorj E, Waring RH, et al. Satellite observed widespread decline in Mongolian grasslands largely due to overgrazing. Global Change Biology, 2014, 20: 418-428
[16] Wang Z, Hou XY, Schellenberg MP, et al. Different responses of plant species to deferment of sheep grazing in a desert steppe of Inner Mongolia, China. The Rangeland Journal, 2014, 36: 583-592
[17] Pellegrini AFA, Ahlstr MA, Hobbie SE, et al. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature, 2018, 553: 194-198
[18] Zhan TY, Zhang ZC, Sun J, et al. Meta-analysis demon-strating that moderate grazing can improve the soil quality across China's grassland ecosystems. Applied Soil Ecology, 2020, 147: 103438
[19] 张俊珍, 周迪, 郭旭东, 等. 适度放牧增加内蒙古典型草原甲烷氧化菌丰度和甲烷吸收. 应用生态学报, 2019, 30(6): 1919-1926
[20] 许宏斌, 辛晓平, 宝音陶格涛, 等. 放牧对呼伦贝尔羊草草甸草原生物量分布的影响. 草地学报, 2020, 28(3): 768-774
[21] 王芳芳, 徐欢, 李婷, 等. 放牧对草地土壤氮素循环关键过程的影响与机制研究进展. 应用生态学报, 2019, 30(10): 3277-3284
[22] 杨婧, 褚鹏飞, 陈迪马, 等. 放牧对内蒙古典型草原α、β和γ多样性的影响机制. 植物生态学报, 2014, 38(2): 188-200
[23] Mcsherry ME, Ritchie ME. Effects of grazing on grassland soil carbon: A global review. Global Change Bio-logy, 2013, 19: 1347-1357
[24] 李元恒, 金一兰, 赵艳云. 放牧对典型草原植物群落系统发育的影响. 中国草地学报, 2019, 41(6): 105-110
[25] Li SB, Shi RR, Li W, et al. Grazing pressure affects offspring sex ratio in a socially monogamous passerine on the Tibet Plateau. Journal of Avian Biology, 2018, 49: 1660
[26] 向明学, 郭应杰, 古桑群宗, 等. 不同放牧强度对拉萨河谷温性草原植物群落和物种多样性的影响. 草地学报, 2019, 27(3): 668-674
[27] Xie R, Wu XQ. Effects of grazing intensity on soil organic carbon of rangelands in Xilin Gol League, Inner Mongolia, China. Journal of Geographical Sciences, 2016, 26: 1550-1560
[28] Lei GB, Li AN, Zhang ZJ, et al. The quantitative estimation of grazing intensity on the Zoige Plateau based on the space-air-ground integrated monitoring technology. Remote Sensing, 2020, 12: 1399
[29] 周华坤, 赵新全, 周立, 等. 不同放牧强度对鹅绒委陵菜克隆生长特征的影响. 西北植物学报, 2006, 26(5): 1021-1029
[30] 牟新待. 放牧压力对人工草地生产能力的影响. 草业学报, 1990(1): 26-34
[31] 皮南林, 周兴民, 赵多琥, 等. 青海高寒草甸矮嵩草草场放牧强度初步研究. 家畜生态, 1985(1): 26-31
[32] 农业大词典委员会. 农业大词典. 北京: 中国农业出版社, 1998
[33] 中国农业百科全书总委员会畜牧业卷委员会. 中国农业百科全书. 北京: 中国农业出版社, 1996
[34] 中国百科大辞典编委会. 中国百科大辞典. 北京: 中国大百科全书出版社, 2005
[35] 中国农业大学. 草地学. 北京: 中国农业出版社, 1982
[36] 全国畜牧业标准化技术委员会. 家庭牧场草地放牧强度分级(GB/T 34754—2017)[EB/OL]. (2018-05-01) [2022-01-08]. https://max.book118.com/html/2019/1012/8132002133002054.shtm
[37] Mott GO. Grazing pressure and the measurement of pasture production. Proceedings of the 8 International Grassland Congress, England, 1960: 606-611
[38] Heady HF. Rangeland Management. New York: McGraw-Hill, 1975
[39] Allen VG, Batello C, Berretta EJ, et al. An international terminology for grazing lands and grazing animals. Grass and Forage Science, 2011, 66: 2
[40] Vallentine JF. Grazing Management. Amsterdam, the Netherland: Elsevier Academic Press, 2000
[41] Hodgson J. Nomenclature and definitions in grazing stu-dies. Grass and Forage Science, 1979, 34: 11-17
[42] Holechek JL, Gomes HDS, Molinar F, et al. Grazing intensity: Critique and approach. Rangelands Archives, 1998, 20: 15-18
[43] 刘伟, 周立, 王溪. 不同放牧强度对植物及啮齿动物作用的研究. 生态学报, 1999, 19(3): 376-382
[44] 赵宁, 张洪轩, 王若梦, 等. 放牧对若尔盖高寒草甸土壤氮矿化及其温度敏感性的影响. 生态学报, 2014, 34(15): 4234-4241
[45] 蒋文兰, 李向林. 不同利用强度对混播草地牧草产量与组分动态的影响. 草业学报, 1993, 2(3): 1-10
[46] 王淑强, 胡直友, 李兆方. 不同放牧强度对红三叶、黑麦草草地植被和土壤养分的影响. 自然资源学报, 1996, 11(3): 280-287
[47] 朱志红, 李希来, 乔有明, 等. 克隆植物矮嵩草在放牧选择压力下的风险分散对策研究. 草业科学, 2004, 21(12): 62-68
[48] 周华坤, 赵新全, 唐艳鸿, 等. 长期放牧对青藏高原高寒灌丛植被的影响. 中国草地, 2004, 26(6): 1-11
[49] 董全民, 赵新全, 马玉寿, 等. 放牧对小嵩草草甸生物量及不同植物类群生长率和补偿效应的影响. 生态学报, 2012, 32(9): 2640-2650
[50] Rivero MJ, Grau-Campanario P, Mullan S, et al. Factors affecting site use preference of grazing cattle studied from 2000 to 2020 through GPS tracking: A review. Sensors, 2021, 21: 2696
[51] 聂柱山, 玉兰. 放牧生态研究的若干进展. 中国草地, 1993(6): 64-69
[52] 陈海军, 王明玖, 韩国栋, 等. 不同强度放牧对贝加尔针茅草原土壤微生物和土壤呼吸的影响. 干旱区资源与环境, 2008, 22(4): 165-169
[53] 范国艳, 张静妮, 张永生, 等. 放牧对贝加尔针茅草原植被根系分布和土壤理化特征的影响. 生态学杂志, 2010, 29(9): 1715-1721
[54] 张静妮, 赖欣, 李刚, 等. 贝加尔针茅草原植物多样性及土壤养分对放牧干扰的响应. 草地学报, 2010, 18(2): 177-182
[55] 王向涛, 张世虎, 陈懂懂, 等. 不同放牧强度下高寒草甸植被特征和土壤养分变化研究. 草地学报, 2010, 18(4): 510-516
[56] Dorji T, Totland Ø, Moe SR. Are droppings, distance from pastoralist camps, and pika burrows good proxies for local grazing pressure? Rangeland Ecology & Mana-gement, 2013, 66: 26-33
[57] 辛有俊, 杜铁瑛, 辛玉春, 等. 青海草地载畜量计算方法与载畜压力评价. 青海草业, 2011, 20(4): 13-22
[58] 李瑞华, 李晓兵, 王宏, 等. 内蒙古典型草原放牧压力评价及土壤 N 储量响应. 生态学报, 2016, 36(3): 758-768
[59] Dara A, Baumann M, Freitag M, et al. Annual Landsat time series reveal post-Soviet changes in grazing pressure. Remote Sensing of Environment, 2020, 239: 111667
[60] 王梦佳, 孙睿, 刘喆, 等. 基于遥感数据的呼伦贝尔草原放牧强度研究. 草业学报, 2017, 26(6): 28-36
[61] 张艳楠. 典型草原放牧强度遥感估测——以白音锡勒牧场为例. 硕士论文. 呼和浩特: 内蒙古大学, 2011
[62] Kays R, Crofoot MC, Jetz W, et al. Terrestrial animal tracking as an eye on life and planet. Science, 2015, 348: aaa2478
[63] Kawamura K, Akiyama T, Yokota H, et al. Quantifying grazing intensities using geographic information systems and satellite remote sensing in the Xilingol steppe region, Inner Mongolia, China. Agriculture, Ecosystems & Environment, 2005, 107: 83-93
[64] 杜永兴, 于文利, 李宝山, 等. 一种基于轨迹数据的放牧强度估算方法. 黑龙江畜牧兽医, 2019(12): 11
[65] 罗培. 不同放牧方式对克氏针茅草原植物群落物种间关联的影响分析——以中蒙边境两个苏木为例. 北方农业学报, 2019, 47(2): 91-96
[66] 于文利. 基于轨迹数据的苏尼特草场放牧强度与预警机制研究. 硕士论文. 包头: 内蒙古科技大学, 2019
[67] 刘林山. 关于草地利用与放牧强度的一些思考. 中国科学院地理科学与资源研究所青藏高原放牧强度专题研讨会, 北京, 2020
[68] 董南, 杨小唤, 蔡红艳. 人口数据空间化研究进展. 地球信息科学学报, 2016, 18(10): 1295-1304
[69] Nicolas G, Robinson TP, Wint GW, et al. Using random forest to improve the downscaling of global livestock census data. PLoS One, 2016, 11(3): e150424
[70] Ye T, Zhao N, Yang X, et al. Improved population mapping for China using remotely sensed and points-of-interest data within a random forests model. Science of the Total Environment, 2019, 658: 936-946
[71] 柏中强, 王卷乐, 杨飞. 人口数据空间化研究综述. 地理科学进展, 2013, 32(11): 1692-1702
[72] Wint W, Robinson T. Gridded Livestock of the World 2007. Roma, Italia: FAO, 2007
[73] 周国利, 程云湘, 马青青, 等. 牦牛放牧强度对青藏高原东缘高寒草甸群落结构与土壤理化性质的影响. 草业科学, 2019, 36(4): 1022-1031
[74] 柴林荣, 孙义, 王宏, 等. 牦牛放牧强度对甘南高寒草甸群落特征与牧草品质的影响. 草业科学, 2018, 35(1): 18-26
[75] 李建龙, 许鹏, 孟林, 等. 不同轮牧强度对天山北坡低山带蒿属荒漠春秋场土草畜影响研究. 草业学报, 1993, 2(2): 60-65
[76] Holechek JL. An approach for setting the stocking rate. Rangelands, 1988, 10: 11
[77] 徐敏云, 高立杰, 李运起. 草地载畜量研究进展: 参数和计算方法. 草业学报, 2014, 23(4): 311-321
[78] Lin L, Dickhoefer U, Müller K, et al. Growth of sheep as affected by grazing system and grazing intensity in the steppe of Inner Mongolia, China. Livestock Science, 2012, 144: 140-147
[79] 宋洁, 王凤歌, 温璐, 等. 放牧对温带典型草原植物物种多样性及土壤养分的影响. 草地学报, 2019, 27(6): 1694-1701
[80] 宋晓辉, 王悦骅, 王占文, 等. 不同放牧强度和水分处理下荒漠草原土壤呼吸与群落地下生物量的关系. 草地学报, 2019, 27(4): 962-968
[81] 蒯晓妍, 邢鹏飞, 张晓琳, 等. 短期放牧强度对半干旱草地植物群落多样性和生产力的影响. 草地学报, 2018, 26(6): 1283-1289
[82] 陈钊, 梁新平, 侯扶江, 等. 不同放牧强度下垂穗披碱草遗传多样性分析. 草业学报, 2015, 24(8): 159-165
[83] 李凤霞, 李晓东, 周秉荣, 等. 放牧强度对三江源典型高寒草甸生物量和土壤理化特征的影响. 草业科学, 2015, 32(1): 11-18
[84] 仝川, 郗风江, 杨景荣, 等. 锡林河流域中游草原植被退化遥感监测及合理放牧强度的确定. 草业学报, 2003, 12(4): 78-83
[85] 冯秀, 李元恒, 李芳, 等. 典型草原合理放牧强度阈值研究. 中国草地学报, 2019, 41(5): 120-127
[86] 徐田伟, 王循刚, 赵新全, 等. 三江源国家公园典型高寒草地冷季牧草营养特征与食草动物承载力. 科学通报, 2020, 65(32): 3610-3618
[87] Li F, Zheng JJ, Wang H, et al. Mapping grazing intensity using remote sensing in the Xilingol steppe region, Inner Mongolia, China. Remote Sensing Letters, 2016, 7: 328-337
[88] Xu DW, Chen BR, Yan RR, et al. Quantitative monitoring of grazing intensity in the temperate meadow steppe based on remote sensing data. International Journal of Remote Sensing, 2019, 40: 2227-2242
[89] Ma QQ, Chai LR, Hou FJ, et al. Quantifying grazing intensity using remote sensing in alpine meadows on Qinghai-Tibetan Plateau. Sustainability, 2019, 11: 417
[90] Li F, Zhao Y, Zheng JJ, et al. Monitoring grazing intensity: An experiment with canopy spectra applied to satellite remote sensing. Journal of Applied Remote Sensing, 2016, 10: 26032
[91] Zhao X, Tan K, Zhao SQ, et al. Changing climate affects vegetation growth in the arid region of the northwestern China. Journal of Arid Environments, 2011, 75: 946-952
[92] 李兰晖. 气候变化和人类活动对青藏高原绿度变化的影响研究. 博士论文. 北京: 中国科学院地理科学与资源研究所, 2019 |