[1] 严中伟, 丁一汇, 翟盘茂, 等. 近百年中国气候变暖趋势之再评估. 气象学报, 2020, 78(3): 370-378 [2] IPCC. Global Warming of 1.5 ℃. Switzerland: IPCC, 2018 [3] 自然资源部. 中国海平面公报2021[EB/OL]. (2022-04-08)[2022-11-15]. http://gi.mnr.gov.cn/202205/t20220507_2735509.html [4] 中国气象局气候变化中心. 中国气候变化蓝皮书(2021). 北京: 科学出版社, 2021 [5] 孙劭, 李多, 刘绿柳, 等. 2016年全球重大天气气候事件及其成因. 气象, 2017, 43(4): 477-485 [6] 叶思源, 谢柳娟, 何磊. 湿地: 地球之肾——生命之舟. 北京: 科学出版社, 2021 [7] Marley AR, Smeaton C, Austin WE. An assessment of the tea bag index method as a proxy for organic matter decomposition in intertidal environments. Journal of Geophysical Research: Biogeosciences, 2019, 124: 2991-3004 [8] Mcleod E, Chmura GL, Bouillon S, et al. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 2011, 9: 552-560 [9] 杨利琼, 韩广轩, 于君宝, 等. 黄河三角洲芦苇湿地生长季净生态系统CO2交换及其环境调控机制. 应用生态学报, 2013, 24(9): 2415-2422 [10] 申霞, 王鹏, 王为攀, 等. 滨海盐沼净碳汇能力研究方法综述. 生态学杂志, 2022, 41(4): 792-803 [11] Kirwan ML, Megonigal JP. Tidal wetland stability in the face of human impacts and sea-level rise. Nature, 2013, 504: 53-60 [12] Tan L, Ge Z, Fei B, et al. The roles of vegetation, tide and sediment in the variability of carbon in the salt marsh dominated tidal creeks. Estuarine, Coastal and Shelf Science, 2020, 239: 106752 [13] 孙金伟, 吴家兵, 刘绿柳, 等. 氮添加对长白山阔叶红松林2种树木幼苗光合生理生态特征的影响. 生态学报, 2016, 36(21): 6777-6785 [14] Nandy P, Ghose M. Photosynthesis and water-use cha-racteristics in Indian mangroves. Journal of Plant Biology, 2005, 48: 245-252 [15] Meir P, Levy PE, Grace J, et al. Photosynthetic para-meters from two contrasting woody vegetation types in West Africa. Plant Ecology, 2007, 192: 277-287 [16] Yu W, Ji R, Jia Q, et al. Vertical distribution characteristics of photosynthetic parameters for Phragmites australis in Liaohe River Delta wetland, China. Journal of Freshwater Ecology, 2017, 32: 557-573 [17] 赵广琦, 张利权, 梁霞. 芦苇与入侵植物互花米草的光合特性比较. 生态学报, 2005, 25(7): 1604-1611 [18] Brodribb TJ, Feild TS, Jordan GJ. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiology, 2007, 144: 1890-1898 [19] 曾小平, 赵平, 孙谷畴. 气候变暖对陆生植物的影响. 应用生态学报, 2006, 17(12): 2445-2450 [20] Eller F, Lambertini C, Nielsen WN, et al. Expression of major photosynthetic and salt-resistance genes in invasive reed lineages grown under elevated CO2 and tempe-rature. Ecology and Evolution, 2014, 4: 4161-4172 [21] 江星浩, 谢柳娟, 叶思源, 等. 江苏滨海湿地芦苇和互花米草光合特性对模拟增温的响应. 生态学报, 2022, 42(19): 7760-7772 [22] 孙宝玉, 韩广轩, 陈亮, 等. 短期模拟增温对黄河三角洲滨海湿地芦苇光响应特征的影响. 生态学报, 2018, 38(1): 167-176 [23] The Secretariat of the Convention on Wetlands. China’s newest Ramsar Sites[EB/OL]. (2013-10-24)[2022-11-15]. https://www.ramsar.org/news/chinas-newest-ramsar-sites [24] Fang HL, Liu GH, Kearney M. Georelational analysis of soil type, soil salt content, landform, and land use in the Yellow River Delta, China. Environmental Management, 2005, 35: 72-83 [25] Zhang X, Ye S, Yin P, et al. Characters and successions of natural wetland vegetation in Yellow River Delta. Ecology and Environmental Sciences, 2009, 18: 292-298 [26] Zhao X, Cui B, Sun T, et al. The relationship between the spatial distribution of vegetation and soil environmental factors in the tidal creek areas of the Yellow River Delta. Ecology and Environmental Sciences, 2010, 19: 1855-1861 [27] 巩骏骥. 黄河三角洲蒸散发变化及影响因素研究. 硕士论文. 济南: 山东师范大学, 2015 [28] Yang W, Zhao H, Chen X, et al. Consequences of short-term C4 plant Spartina alterniflora invasions for soil organic carbon dynamics in a coastal wetland of Eastern China. Ecological Engineering, 2013, 61: 50-57 [29] 张岩, 付昌昌, 毛磊. 江苏盐城地区地下水水化学特征及形成机理. 长江流域资源与环境, 2017, 26(4): 598-605 [30] Yu XY, Ye SY, Pei LX, et al. Biophysical warming patterns of an open-top chamber and its short-term influence on a Phragmites wetland ecosystem in China. China Geology, 2023, 6: doi: 10.31035/cg2022064 [31] 郭丽丽, 郝立华, 贾慧慧, 等. NaCl胁迫对两种番茄气孔特征、气体交换参数和生物量的影响. 应用生态学报, 2018, 29(12): 3949-3958 [32] 叶子飘, 康华靖, 段世华, 等. 不同CO2浓度下大豆叶片的光合生理生态特性. 应用生态学报, 2018, 29(2): 583-591 [33] 徐金忠, 魏琳, 徐洪亮, 等. 不同生态因子对荚果蕨生长和光合特性的影响. 中国农学通报, 2017, 33(8): 19-24 [34] 戚志伟, 姜楠, 高艳娜, 等. 崇明岛东滩湿地芦苇光合作用对土壤水盐因子的响应. 湿地科学, 2016, 14(4): 538-545 [35] 孙丽君, 吕光辉, 田幼华, 等. 不同土壤水分条件下荒漠植物白麻光合生理特性的比较. 新疆农业科学, 2011, 48(4): 755-760 [36] 常金宝. 沙柳幼苗光合、蒸腾强度日动态变化及影响因素. 内蒙古师范大学学报: 自然科学汉文版, 2003, 32(4): 17-20 [37] 郑熊. 东寨港3种红树植物光合生理特征研究. 硕士论文. 海口: 海南师范大学, 2022 [38] Zhang Y, Ma K. Geographic distribution patterns and status assessment of threatened plants in China. Biodiversity and Conservation, 2008, 17: 1783-1798 [39] 许大全, 李德耀, 邱国雄, 等. 毛竹叶光合作用的气孔限制研究. 植物生理学报, 1987, 13(2): 154-160 [40] 张效星, 樊毅, 贾悦, 等. 水分亏缺对滴灌柑橘光合和产量及水分利用效率的影响. 农业工程学报, 2018, 34(3): 143-150 [41] Wang X, Piao S, Ciais P, et al. A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature, 2014, 506: 212-215 [42] 王为民, 王晨, 李春俭, 等. 大气二氧化碳浓度升高对植物生长的影响. 西北植物学报, 2000, 20(4): 676-683 [43] Martin RE, Asner GP, Sack L. Genetic variation in leaf pigment, optical and photosynthetic function among diverse phenotypes of Metrosideros polymorpha grown in a common garden. Oecologia, 2007, 151: 387-400 [44] 许大全, 李德耀, 沈允钢, 等. 田间小麦叶片光合作用“午睡”现象的研究. 植物生理学报, 1984, 10(3): 269-276 [45] 郭志华, 张宏达, 李志安, 等. 鹅掌楸(Liriodendron chinense)苗期光合特性的研究. 生态学报, 1999, 19(2): 22-27 [46] 张小燕. 两种红树不同种源幼苗叶片性状的差异及对高温的生理响应. 硕士论文. 南宁: 广西大学, 2021 [47] 杨淑慧, 祁秋艳, 仲启铖, 等. 崇明东滩围垦湿地芦苇光合作用对模拟升温的响应初探. 长江流域资源与环境, 2012, 21(5): 604-610 |