[1] Meehl GA, Tebaldi C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 2004, 305: 994-997 [2] Achebak H, Devolder D, Ingole V, et al. Reversal of the seasonality of temperature-attributable mortality from respiratory diseases in Spain. Nature Communications, 11: 2457-2459 [3] Keellings D, Moradkhani H. Spatiotemporal evolution of heat wave severity and coverage across the United States. Geophysical Research Letters, 2020, 47: 1029 [4] Zheng Y, Weng Q. High spatial- and temporal-resolution anthropogenic heat discharge estimation in Los Angeles County, California. Journal of Environmental Management, 2018, 206: 1274-1286 [5] Monteiro FF, Gonalves WA, Melo LD, et al. Assessment of urban heat islands in Brazil based on MODIS remote sensing data. Urban Climate, 2021, 35: 100726 [6] Geng X, Yu Z, Zhang D, et al. The influence of local background climate on the dominant factors and thre-shold-size of the cooling effect of urban parks. Science of the Total Environment, 2022, 823: 153806 [7] Igor O, Vanessa B. A quantitative approach for analyzing the relationship between urban heat islands and land cover. Remote Sensing, 2012, 4: 3596-3618 [8] 王佳, 钱雨果, 韩立建, 等. 基于GWR模型的土地覆盖与地表温度的关系——以京津唐城市群为例. 应用生态学报, 2016, 27(7): 2128-2136 [9] Li X, Zhou Y, Asrar GR, et al. The surface urban heat island response to urban expansion: A panel analysis for the conterminous United States. Science of the Total Environment, 2017, 605-606: 426-435 [10] Zheng Y, Huang L, Zhai J. Divergent trends of urban thermal environmental characteristics in China. Journal of Cleaner Production, 2020, 287: 125053 [11] Singh P, Kikon N, Verma P. Impact of land use change and urbanization on urban heat island in Lucknow City, Central India: A remote sensing based estimate. Sustai-nable Cities and Society, 2017, 32: 100-114 [12] 葛荣凤, 王京丽, 张力小, 等. 北京市城市化进程中热环境响应. 生态学报, 2016, 36(19): 6040-6049 [13] Hao W, Shen Q, Tang BS, et al. A framework of decision-making factors and supporting information for faci-litating sustainable site planning in urban renewal projects. Cities, 2014, 40: 44-55 [14] Wu P, Zhong K, Wang L, et al. Influence of underlying surface change caused by urban renewal on land surface temperatures in Central Guangzhou. Building and Environment, 2022: 215: 108985 [15] Wang W, Shu J. Urban renewal can mitigate urban heat islands. Geophysical Research Letters, 2020, 47: 85948 [16] 扎西欧珠, 边多, 次珍, 等. 基于MODIS遥感数据和气象观测数据的藏北高原地表温度变化特征. 中国农学通报, 2020, 36(20): 136-142 [17] Zhang X, Liu L, Zhao T, et al. GISD30: Global 30 m impervious-surface dynamic dataset from 1985 to 2020 using time-series Landsat imagery on the Google Earth Engine platform. Earth System Science Data, 2022, 14: 1831-1856 [18] Huete A, Didan K, Miura T, et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 2002, 83: 195-213 [19] 江颂, 彭建, 董建权, 等. 地表城市热岛效应的概念内涵与定量刻画. 地理学报, 2022, 77(9): 2249-2265 [20] Yi Y, Shen G, Zhang C, et al. Quantitative analysis and prediction of urban heat island intensity on urban-rural gradient: A case study of Shanghai. Science of the Total Environment, 2022, 829: 154264 [21] Zhou D, Zhao S, Liu S, et al. Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers. Remote Sensing of Environment, 2014, 152: 51-61 [22] 徐涵秋, 陈本清. 不同时相的遥感热红外图象在研究城市热岛变化中的处理方法. 遥感技术与应用, 2003, 18(3): 129-133 [23] Sen KP. Estimates of the regression coefficient based on Kendall’s Tau. Journal of the American Statistical Association, 1968, 63: 1379-1389 [24] Burn DH, Elnur M. Detection of hydrologic trends and variability. Journal of Hydrology, 2002, 255: 107-122 [25] Li X, Gong P, Zhou Y, et al. Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Environmental Research Letters, 2020, 15: 94044 [26] Lefever DW. Measuring geographic concentration by means of the standard deviational ellipse. American Journal of Sociology, 1926, 32: 88-94 [27] 陈爱莲, 孙然好, 陈利顶. 基于景观格局的城市热岛研究进展. 生态学报, 2012, 32(14): 4553-4565 [28] 顾莹, 束炯. 上海近30年人为热变化及与气温的关系研究. 长江流域资源与环境, 2014, 23(8): 1105-1110 [29] 王美雅, 徐涵秋. 中外超大城市热岛效应变化对比研究. 自然资源遥感, 2021, 33(4): 200-208 [30] Mandel I, Lipovetsky S. Climate Change Report IPCC 2021: A chimera of science and politics. Social Science Electronic Publishing, 2021, 18: 1556-5068 [31] 闫章美, 周德成, 张良侠. 我国三大城市群地区城市和农业用地地表热环境效应对比研究. 生态学报, 2021, 41(22): 8870-8881 [32] 王煜, 唐力, 朱海涛, 等. 基于多源遥感数据的城市热环境响应与归因分析——以深圳市为例. 生态学报, 2021, 41(22): 8771-8782 [33] Zhou DC, Zhang L, Hao L, et al. Spatiotemporal trends of urban heat island effect along the urban development intensity gradient in China. Science of the Total Environment, 2016, 544: 617-626 [34] Stone BJ, Rodgers MO. Urban form and thermal efficiency. Journal of the American Planning Association, 2001, 67: 186 [35] Yue W, Liu X, Zhou Y, et al. Impacts of urban confi-guration on urban heat island: An empirical study in China mega-cities. Science of the Total Environment, 2019, 671: 1036-1046 [36] 杨鹏, 高祺, 张艳品, 等. 基于Fragstats4的景观格局指数与地表温度的相关性——以石家庄市为例. 气象科技, 2021, 49(3): 464-474 [37] Yu Z, Yang G, Zuo S, et al. Critical review on the coo-ling effect of urban blue-green space: A threshold-size perspective. Urban Forestry & Urban Greening, 2020, 49: 126630 [38] Oke TR. The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 1982, 108: 1-24 [39] 梁洪武, 阿里木江·卡斯木, 张雪玲, 等. 干旱区绿洲城市群地表温度时空变化及其影响因素——以天山北坡城市群为例. 生态学报, 2023, 43(9): 3650-3664 [40] Hou H, Su H, Liu K, et al. Driving forces of UHI changes in China’s major cities from the perspective of land surface energy balance. Science of the Total Environment, 2022, 829: 154710 |