[1] Choat B, Brodribb TJ, Brodersen CR, et al. Triggers of tree mortality under drought. Nature, 2018, 558: 531-539 [2] Cook BI, Mankin JS, Anchukaitis KJ. Climate change and drought: From past to future. Current Climate Change Reports, 2018, 4: 164-179 [3] Barbeta A, Mejía-Chang M, Ogaya R, et al. The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest. Global Change Biology, 2015, 21: 1213-1225 [4] Leo M, Oberhuber W, Schuster R, et al. Evaluating the effect of plant water availability on inner alpine conife-rous trees based on sap flow measurements. European Journal of Forest Research, 2014, 133: 691-698 [5] Touchan R, Anchukaitis KJ, Meko DM, et al. Long term context for recent drought in northwestern Africa. Geophysical Research Letters, 2008, 35: L13705 [6] Van Nieuwstadt MGL, Sheil D. Drought, fire and tree survival in a Borneo rain forest, East Kalimantan, Indonesia. Journal of Ecology, 2005, 93: 191-201 [7] Bigler C, Bräker OU, Bugmann H, et al. Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems, 2006, 9: 330-343 [8] Bréda N, Huc R, Granier A, et al. Temperate forest trees and stands under severe drought: A review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science, 2006, 63: 625-644 [9] Kurz WA, Dymond CC, Stinson G, et al. Mountain pine beetle and forest carbon feedback to climate change. Nature, 2008, 452: 987-990 [10] Rolim SG, Jesus RM, Nascimento HE, et al. Biomass change in an Atlantic tropical moist forest: The ENSO effect in permanent sample plots over a 22-year period. Oecologia, 2005, 142: 238-246 [11] Li MY, Fang LD, Duan CY, et al. Greater risk of hydraulic failure due to increased drought threatens pine plantations in Horqin Sandy Land of northern China. Forest Ecology and Management, 2020, 461: 117980 [12] Hartmann H, Moura CF, Anderegg WRL, et al. Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytologist, 2018, 218: 15-28 [13] 宋立宁, 朱教君, 郑晓. 基于沙地樟子松人工林衰退机制的营林方案. 生态学杂志, 2017, 36(11): 3249-3256 [14] Song LN, Zhu JJ, Zheng X, et al. Transpiration and canopy conductance dynamics of Pinus sylvestris var. mongolica in its natural range and in an introduced region in the sandy plains of Northern China. Agricultural and Forest Meteorology, 2020, 281: 107830 [15] Song LN, Zhu JJ, Yan QL, et al. Comparison of intrinsic water use efficiency between different aged Pinus sylvestris var. mongolica wide windbreaks in semiarid sandy land of northern China. Agroforestry Systems, 2015, 89: 477-489 [16] Zhu JJ, Kang HZ, Tan H, et al. Natural regeneration characteristics of Pinus sylvestris var. mongolica forests on sandy land in Honghuaerji, China. Journal of Fores-try Research, 2005, 16: 253-259 [17] Song LN, Li MC, Zhu JJ, et al. Comparisons of radial growth and tree-ring cellulose δ13C for Pinus sylvestris var. mongolica in natural and plantation forests on sandy lands. Journal of Forest Research, 2017, 22: 160-168 [18] Zheng X, Zhu JJ, Yan QL, et al. Effects of land use changes on the groundwater table and the decline of Pinus sylvestris var. mongolica plantations in southern Horqin Sandy Land, Northeast China. Agricultural Water Management, 2012, 109: 94-106 [19] Song LN, Zhu JJ, Zhang JX, et al. Divergent growth responses to warming and drying climates between native and non-native tree species in Northeast China. Trees, 2019, 33: 1143-1155 [20] Deng JF, Yao JQ, Zheng X, et al. Transpiration and canopy stomatal conductance dynamics of Mongolian pine plantations in semiarid deserts, Northern China. Agricultural Water Management, 2021, 249: 106806 [21] Song LN, Zhu JJ, Zheng X, et al. Comparison of canopy transpiration between Pinus sylvestris var. mongolica and Pinus tabuliformis plantations in a semiarid sandy region of Northeast China. Agricultural and Forest Meteorology, 2022, 314: 108784 [22] 陈立欣, 李湛东, 张志强, 等. 北方四种城市树木蒸腾耗水的环境响应. 应用生态学报, 2009, 20(12): 2861-2870 [23] Du S, Wang YL, Kume T, et al. Sapflow characteristics and climatic responses in three forest species in the semi-arid Loess Plateau region of China. Agricultural and Forest Meteorology, 2011, 151: 1-10 [24] Lagergren F, Lindroth A. Transpiration response to soil moisture in pine and spruce trees in Sweden. Agricultural and Forest Meteorology, 2002, 112: 67-85 [25] Grossiord C, Sevanto S, Dawson TE, et al. Warming combined with more extreme precipitation regimes modifies the water sources used by trees. New Phytologist, 2017, 213: 584-596 [26] 杨帆, 刘康, 王效科, 等. 内蒙古红花尔基沙地樟子松群落多样性变异研究. 干旱区资源与环境, 2005, 19(4): 192-196 [27] 包光, 刘治野, 刘娜, 等. 呼伦贝尔沙地樟子松径向生长特征的VS模型模拟分析. 应用生态学报, 2021, 32(10): 3448-3458 [28] Zhu JJ, Fan ZP, Zeng DH, et al. Comparison of stand structure and growth between artificial and natural forests of Pinus sylvestiris var. mongolica on sandy land. Journal of Forestry Research, 2003, 14: 103-111 [29] 李明阳, 党宏忠, 陈帅, 等. 毛乌素沙地南缘樟子松树干液流特征及其对环境因子的响应. 干旱区资源与环境, 2023, 37(4): 153-161 [30] 赵晓彬, 曹双成, 高静, 等. 毛乌素沙地植物多样性保护防沙治沙示范. 中国野生植物资源, 2021, 40(6): 64-72 [31] 党宏忠, 冯金超, 韩辉. 沙地樟子松边材液流速率的方位差异特征. 林业科学, 2020, 56(1): 29-37 [32] Dang HZ, Han H, Chen S, et al. A fragile soil moisture environment exacerbates the climate change-related impacts on the water use by Mongolian Scots pine (Pinus sylvestris var. mongolica) in northern China: Long-term observations. Agricultural Water Management, 2021, 251: 106857 [33] Lu P, Urban L, Zhao P. Granier’s thermal dissipation probe (TDP) method for measuring sap flow in trees: Theory and practice. Acta Botanica Sinica, 2004, 46: 631-646 [34] 李自豪, 卢志朋, 马澜桐, 等. 辽西北半干旱区沙地樟子松树干液流变化特征及影响因素. 沈阳农业大学学报, 2020, 51(3): 271-278 [35] 党宏忠, 张学利, 韩辉, 等. 樟子松固沙林林水关系研究进展及对营林实践的指导. 植物生态学报, 2022, 46(9): 971-983 [36] 殷秀辉, 程飞, 张硕新. 油松树干液流特征及其与环境因子的关系. 西北林学院学报, 2011, 26(5): 24-28 [37] 刘建立, 王彦辉, 管伟, 等. 六盘山北侧生长季内华北落叶松树干液流速率研究. 华中农业大学学报, 2008, 27(3): 434-440 [38] 孙慧珍, 孙龙, 王传宽, 等. 东北东部山区主要树种树干液流研究. 林业科学, 2005, 41(3): 36-42 [39] 魏潇, 常学向, 杨淇越, 等. 祁连山青海云杉(Picea crassifolia)夜间树干液流特征及影响因素. 冰川冻土, 2015, 37(1): 87-94 [40] 鲁小珍. 马尾松、栓皮栎生长盛期树干液流的研究. 安徽农业大学学报, 2001, 28(4): 401-404 [41] 党宏忠, 却晓娥, 冯金超, 等. 晋西黄土区苹果树边材液流速率对环境驱动的响应. 应用生态学报, 2019, 30(3): 823-831 [42] Li W, Si JH, Yu TF, et al. Response of Populus euphratica Oliv. sap flow to environmental variables for a de-sert riparian forest in the Heihe River Basin, Northwest China. Journal of Arid Land, 2016, 8: 591-603 [43] 李宝, 常顺利, 孙雪娇, 等. 天山北坡雪岭云杉森林的蒸腾耗水规律. 西部林业科学, 2022, 51(5): 106-112 [44] 党宏忠, 杨文斌, 李卫, 等. 民勤绿洲二白杨树干液流的径向变化及时滞特征. 应用生态学报, 2014, 25(9): 2501-2510 [45] Whitehead D. Regulation of stomatal conductance and transpiration in forest canopies. Tree Physiology, 1998, 18: 633-644 [46] Mitchell PJ, Veneklaas E, Lambers H, et al. Partitioning of evapotranspiration in a semi-arid eucalypt woodland in south-western Australia. Agricultural and Forest Meteorology, 2009, 149: 25-37 [47] 张锦春, 徐先英, 孙学兵, 等. 民勤荒漠梭梭茎干液流动态. 草业科学, 2023, 40(1): 169-178 [48] 黄雅茹, 马迎宾, 李永华, 等. 库姆塔格沙漠东南部胡杨液流变化及其对环境因子的响应. 草业科学, 2021, 38(2): 335-347 [49] Gartner K, Nadezhdina N, Englisch M, et al. Sap flow of birch and Norway spruce during the European heat and drought in summer 2003. Forest Ecology and Management, 2009, 258: 590-599 [50] Olchev A, Cermák J, Nadezhdina N, et al. Transpiration of a mixed forest stand: Field measurements and simulation using SVAT models. Boreal Environment Research, 2002, 4: 389-397 [51] Jiang P, Wang H, Meinzer FC, et al. Linking reliance on deep soil water to resource economy strategies and abundance among coexisting understory shrub species in subtropical pine plantations. New Phytologist, 2020, 225: 222-233 [52] Yu Z, Liu SR, Wang JX, et al. Natural forests exhibit higher carbon sequestration and lower water consumption than planted forests in China. Global Change Biology, 2018, 25: 68-77 [53] 曹恭祥, 王绪芳, 熊伟, 等. 宁夏六盘山人工林和天然林生长季的蒸散特征. 应用生态学报, 2013, 24(8): 2089-2096 [54] Bao G. Mongolian pines (Pinus sylvestris var. mongolica) in the Hulun Buir steppe, China, respond to climate in adjustment to the local water supply. Interna-tional Journal of Biometeorology, 2015, 59: 1-10 [55] 牛丽, 岳广阳, 赵哈林, 等. 利用液流法估算樟子松和小叶锦鸡儿人工林蒸腾耗水. 北京林业大学学报, 2008, 30(6): 1-8 |