欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2023, Vol. 34 ›› Issue (12): 3420-3426.doi: 10.13287/j.1001-9332.202312.015

• 综合评述 • 上一篇    下一篇

生物质灰的碳捕集与封存研究进展

吴松滨1,2, 马铭婧1,2, 王娇月1,3, 牛乐1,2, 张文凤1,2, 徐晓伟1,2, 郗凤明1,3*   

  1. 1中国科学院沈阳应用生态研究所, 沈阳 110016;
    2中国科学院大学, 北京 100049;
    3中国科学院污染生态与环境工程重点实验室, 沈阳 110016
  • 收稿日期:2023-08-20 修回日期:2023-10-30 出版日期:2023-12-15 发布日期:2024-06-15
  • 通讯作者: *E-mail: xifengming@iae.ac.cn
  • 作者简介:吴松滨, 男, 1999年生, 硕士研究生。主要从事环境工程研究。E-mail: wusongbin22@mails.ucas.ac.cn
  • 基金资助:
    中国科学院沈阳应用生态研究所重大项目(IAEMP202201)、中国科学院青年创新促进会会员项目(2020201,Y202050)和辽宁省自然科学基金面上基金项目(2022-MS-031)

Research progress on biomass ash carbon capture and storage

WU Songbin1,2, MA Mingjing1,2, WANG Jiaoyue1,3, NIU Le1,2, ZHANG Wenfeng1,2, XU Xiaowei1,2, XI Fengming1,3*   

  1. 1Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China;
    2University of Chinese Academy of Sciences, Beijing 100049, China;
    3Key Laboratory of Pollution Ecology and Environmental Engineering, Chinese Academy of Sciences, Shenyang 110016, China
  • Received:2023-08-20 Revised:2023-10-30 Online:2023-12-15 Published:2024-06-15

摘要: 碳捕集与封存技术是减缓大气CO2浓度上升和全球变暖的重要手段,也是实现双碳战略的有效途径。生物质灰资源化利用封存CO2是一种安全、永久且环保的碳捕集与封存方式。为更好理解生物质灰的碳封存能力,本文系统梳理了生物质灰碳捕集与封存研究的主要进展,阐述了生物质灰碳封存机理,分析了影响生物质灰碳封存的影响因素,探究了生物质灰碳捕集与封存技术应用。生物质灰的碳捕集与封存能力主要源于其CaO、MgO等碱土金属氧化物组分,且实际固碳效率受生物质来源、化学组分、温度、湿度、压强、CO2浓度等因素影响,但影响机制尚不明确。生物质灰的碳捕集与封存能力会影响灰分在建筑材料回用、土壤改良和碳捕集与封存吸附剂制备方面的应用,需开展长期研究。未来应加强多来源途径的生物质灰的碳化效率研究,建立生物质灰碳化影响关联数据库;构建方法体系,推进生物质灰分科学管理、碳捕集与封存技术研发和碳汇核算定量评估。

关键词: 生物质灰, 矿物碳酸化, 碳捕集与封存, 双碳战略

Abstract: Carbon capture and storage (CCS) technology is an important way to slow down the continuous increase in atmospheric CO2 concentration and to achieve the dual carbon target. Carbon capture and storage through biomass ash is a secure, permanent, and environment friendly way. To better understand the characteristics of biomass ash carbon capture and storage, we summarized progresses on biomass ash carbon capture and storage, clarified the mechanisms of biomass ash carbon sequestration, analyzed the influencing factors, and explored its applications in various domains. The capacity of CCS by biomass ash mainly derived from alkaline earth metal oxides of CaO and MgO. The actual carbon sequestration efficiency is affected by factors such as biomass source, chemical composition, temperature, humidity, pressure, and CO2 concentration. However, the underlying mechanism is unclear. The CCS capacity of biomass ash significantly impacts its potential applications in building materials reuse, soil quality improvement, and adsorbents carbon capture and storage absorbent preparation. Long-term research is critically needed. For future studies, we should strengthen the research on the carbonization efficiency of biomass ash from multiple sources, establish a database related to the impact of biomass ash carbonization, build a methodological system to promote scientific management of biomass ash, develop biomass ash carbon capture and storage technologies, and quantitatively assess its role in carbon sequestration.

Key words: biomass ash, mineral carbonation, carbon capture and storage, dual carbon strategy