[1] 孙会国, 汉景泰, 张淑荣, 等. “05-06”西江特大洪水对河流碳输出通量的影响. 科学通报, 2006, 51(23): 2773-2779 [2] 单森, 齐远志, 罗春乐, 等. 中国主要河流输送陆源碳的同位素特征及影响因素. 地球科学进展, 2020, 35(9): 948-961 [3] 高全洲, 陶贞. 河流有机碳的输出通量及性质研究进展. 应用生态学报, 2003, 14(6): 1000-1002 [4] Li MX, Peng CH, Wang M, et al. The carbon flux of global rivers: A re-evaluation of amount and spatial patterns. Ecological Indicators, 2017, 80: 40-51 [5] 安志宏, 孙自永, 胡雅璐, 等. 多年冻土区河流溶解性有机碳输出的研究进展. 地质科技情报, 2018, 37(1): 204-211 [6] Ren W, Tian H, Tao B, et al. Large increase in dissolved inorganic carbon flux from the Mississippi River to Gulf of Mexico due to climatic and anthropogenic changes over the 21st century. Journal of Geophysical Research: Biogeosciences, 2015, 120: 724-736 [7] 尹晓敏, 吕宪国, 刘兴土, 等. 土地利用变化对挠力河流域可溶性有机碳输出的影响. 应用生态学报, 2015, 26(12): 3788-3794 [8] 覃蔡清, 李思亮, 岳甫均, 等. 喀斯特关键带溶解性碳的迁移转化过程及其对降雨事件的响应. 第四纪研究, 2021, 41(4): 1128-1139 [9] 倪茂飞. 长江上游典型河流溶解性碳输运及水-气界面二氧化碳交换研究. 博士论文. 北京: 中国科学院大学, 2019 [10] 陈珊珊, 臧淑英, 孙丽. 东北多年冻土退化及环境效应研究现状与展望. 冰川冻土, 2018, 40(2): 298-306 [11] Frey KE, Mcclelland JW. Impacts of permafrost degradation on arctic river biogeochemistry. Hydrological Processes, 2009, 23: 169-182 [12] O’Donnell JA, Aiken GR, Walvoord MA, et al. Dissolved organic matter composition of winter flow in the Yukon River basin: Implications of permafrost thaw and increased groundwater discharge. Global Biogeochemical Cycles, 2012, 26: GB0E06 [13] Tank SE, Raymond PA, Striegl RG, et al. A land-to-ocean perspective on the magnitude, source and implication of DIC flux from major Arctic rivers to the Arctic Ocean. Global Biogeochemical Cycles, 2012, 26: GB4018 [14] Giesler R, Lyon SW, Mörth CM, et al. Catchment-scale dissolved carbon concentrations and export estimates across six subarctic streams in northern Sweden. Biogeosciences, 2014, 11: 525-537 [15] 鄂馨卉, 汪亚峰, 高扬, 等. 黄土高原降雨驱动下流域碳输移特征及其碳流失评估: 以羊圈沟坝系流域为例. 环境科学, 2017, 38(8): 3264-3272 [16] 马明真, 高扬, 郝卓. 亚热带典型流域C、N沉降季节变化特征及其耦合输出过程. 生态学报, 2019, 39(2): 599-610 [17] Pan YP, Wang YS, Xin JY, et al. Study on dissolved organic carbon in precipitation in Northern China. Atmospheric Environment, 2010, 44: 2350-2357 [18] 段亮亮, 满秀玲, 俞正祥, 等. 森林干扰对大兴安岭北部森林小流域径流情势的影响. 生态学报, 2017, 37(5): 1421-1430 [19] 蔡玉山, 王雯倩, 肖湘, 等. 大兴安岭多年冻土区流域春季冻融期氮湿沉降与水体氮输出特征. 应用生态学报, 2023, 34(2): 396-404 [20] 肖瑞晗, 满秀玲, 丁令智. 坡位对寒温带天然樟子松林土壤微生物生物量碳氮的影响. 北京林业大学学报, 2020, 42(2): 31-39 [21] 苗忠英, 赵省民, 邓坚, 等. 浅变质烃源岩生物标志物地球化学: 以漠河盆地漠河组为例. 地质学报, 2014, 88(1): 134-143 [22] 岳平, 宋韦, 李凯辉, 等. 天山中部巴音布鲁克高寒草原大气无机氮沉降. 应用生态学报, 2014, 25(6): 1592-1598 [23] Wang WQ, Cai YS, Xiao X, et al. Characteristics of stream dissolved organic carbon in the Laoyeling permafrost watershed during spring freeze-thaw period. Acta Ecologica Sinica, 2023, 43: 6716-6727 [24] 贾珺杰, 高扬, 汪亚峰. 黄土高原典型坝系流域碳氮湿沉降与水体碳氮流失特征. 生态学报, 2019, 39(3): 853-863 [25] 刘堰杨, 秦纪洪, 孙辉. 川西高海拔河流中溶解性有机质(DOM)紫外-可见光吸收光谱特征. 环境科学学报, 2018, 38(9): 3662-3671 [26] Fichot CG, Benner R. The spectral slope coefficient of chromophoric dissolved organic matter (S275-295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins. Limnology and Oceanography, 2012, 57: 1453-1466 [27] Zhou YQ, Zhang YL, Shi K, et al. Dynamics of chromophoric dissolved organic matter influenced by hydrological conditions in a large, shallow, and eutrophic lake in China. Environmental Science and Pollution Research, 2015, 22: 12992-13003 [28] 闫晓寒, 韩璐, 刘勇丽, 等. 基于UV-Vis辽河保护区地表水DOM的时空分布特征. 环境科学研究, 2022, 35(1): 51-59 [29] 徐彩丽, 罗春乐, 薛跃君, 等. 山东省降雨和降雪中溶解有机碳、溶解无机碳和总氮的浓度变化及来源分析. 环境科学学报, 2016, 36(2): 658-666 [30] 吕茂奎, 谢锦升, 江淼华, 等. 米槠常绿阔叶次生林和杉木人工林穿透雨和树干径流可溶性有机质浓度和质量的比较. 应用生态学报, 2014, 25(8): 2201-2208 [31] Coelho CH, Francisco JG, Nogueira RFP, et al. Dissolved organic carbon in rainwater from areas heavily impacted by sugar cane burning. Atmospheric Environment, 2008, 42: 7115-7121 [32] Niu HW, Kang SC, Shi XF, et al. Dissolved organic carbon in summer precipitation and its wet deposition flux in the Mt. Yulong region, southeastern Tibetan Plateau. Journal of Atmospheric Chemistry, 2019, 76: 1-20 [33] 张学珍, 于志博, 郑景云, 等. 植物挥发性有机物的气候与环境效应研究进展. 地球科学进展, 2015, 30(11): 1198-1209 [34] 韩曦. 河流碳含量及其同位素特征的动态格局. 博士论文. 武汉: 中国科学院大学, 2019 [35] Krickov IV, Lim AG, Shirokova LS, et al. Environmental controllers for carbon emission and concentration patterns in Siberian rivers during different seasons. Science of the Total Environment, 2023, 859: 160202 [36] Pokrovsky OS, Manasypov RM, Loiko S, et al. Permafrost coverage, watershed area and season control of dissolved carbon and major elements in western Siberian rivers. Biogeosciences, 2015, 12: 6301-6320 [37] 王亮. 黄河干流碳输运及人类活动对其影响. 博士论文. 青岛: 中国海洋大学, 2014 [38] 郭智伟. 黄河中游碳输移和碳逸出的时空变化规律及其影响因素. 硕士论文. 呼和浩特: 内蒙古大学, 2022 [39] Striegl RG, Dornblaser MM, Aiken GR, et al. Carbon export and cycling by the Yukon, Tanana, and Porcupine rivers, Alaska, 2001-2005. Water Resources Research, 2007, 43: W02411 [40] 解晨骥. 东江流域化学风化的碳汇效应及河流溶解碳的输出过程. 博士论文. 广州: 中山大学, 2014 [41] 郎明翰, 王希臣, 满秀玲, 等. 大兴安岭多年冻土区森林小流域基流分割. 东北林业大学学报, 2021, 49(5): 90-96 [42] Lott DA, Stewart MT. Base flow separation: A comparison of analytical and mass balance methods. Journal of Hydrology, 2016, 535: 525-533 [43] Chaplot V, Mutema M. Sources and main controls of dissolved organic and inorganic carbon in river basins: A worldwide meta-analysis. Journal of Hydrology, 2021, 603: 126941 [44] Hutchins RHS, Prairie YT, Del Giorgio PA. Large-scale landscape drivers of CO2, CH4, DOC, and DIC in boreal river networks. Global Biogeochemical Cycles, 2019, 33: 125-142 [45] 张永领. 河流有机碳循环研究综述. 河南理工大学学报: 自然科学版, 2012, 31(3): 344-351 [46] Finlay J, Neff J, Zimov S, et al. Snowmelt dominance of dissolved organic carbon in high-latitude watersheds: Implications for characterization and flux of river DOC. Geophysical Research Letters, 2006, 33: L10401 [47] Wang Y, Wang GX, Sun XY, et al. Spatiotemporal variability of organic carbon in streams and rivers of the Northern Hemisphere cryosphere. Science of the Total Environment, 2024, 906: 167370 [48] 吴红宝, 秦晓波, 吕成文, 等. 脱甲河流域水体溶解有机碳时空分布特征. 农业环境科学学报, 2016, 35(10): 1968-1976 [49] Guo YD, Song CC, Wan ZM, et al. Dynamics of dissolved organic carbon release from a permafrost wetland catchment in northeast China. Journal of Hydrology, 2015, 531: 919-928 [50] Guo YD, Song CC, Wang LL, et al. Concentrations, sources, and export of dissolved CH4 and CO2 in rivers of the permafrost wetlands, northeast China. Ecological Engineering, 2016, 90: 491-497 [51] Soria-Reinoso I, Alcocer J, Sánchez-Carrillo S, et al. The seasonal dynamics of organic and inorganic carbon along the tropical Usumacinta River Basin (Mexico). Water, 2022, 14: 2703 [52] Chen S, Zhong J, Li SL, et al. Multiple controls on carbon dynamics in mixed karst and non-karst mountainous rivers, Southwest China, revealed by carbon isotopes (δ13C and Δ14C). Science of the Total Environment, 2021, 791: 148347 [53] 张连凯, 覃小群, 杨慧, 等. 珠江流域河流碳输出通量及变化特征. 环境科学, 2013, 34(8): 3025-3034 [54] Atkins ML, Santos IR, Maher DT. Seasonal exports and drivers of dissolved inorganic and organic carbon, carbon dioxide, methane and δ13C signatures in a subtropical river network. Science of the Total Environment, 2017, 575: 545-563 [55] 宁成武, 包妍, 黄涛, 等. 夏季巢湖入湖河流溶解性有机质来源及其空间变化. 环境科学, 2021, 42(8): 3743-3752 [56] Sadat-Noori M, Maher DT, Santos IR. Groundwater discharge as a source of dissolved carbon and greenhouse gases in a subtropical estuary. Estuaries and Coasts, 2016, 39: 639-656 |