[1] Jones ER, Bierkens MFP, Van Puijenbroek PJTM, et al. Sub-Saharan Africa will increasingly become the dominant hotspot of surface water pollution. Nature Water, 2023, 1: 602-613 [2] Koelmans AA, Redondo-Hasselerharm PE, Nor NHM, et al. Risk assessment of microplastic particles. Nature Reviews Materials, 2022, 7: 138-152 [3] 王文洁, 于丽明, 邵梦莹, 等. 畜禽养殖环境中抗生素抗性基因污染的研究进展. 应用生态学报, 2023, 34(5): 1415-1429 [4] 王帆, 阿琼, 姜姗, 等. 生物膜法处理污水的研究现状及新兴趋势的可视化分析. 四川环境, 2022, 41(5): 314-324 [5] 郭峻宁, 邓雪婷, 高蓉蓉, 等. 细菌生物膜在农田土壤污染修复中的应用研究进展. 微生物学通报, 2022, 49(9): 3919-3932 [6] 张金莲, 吴振斌. 水环境中生物膜的研究进展. 环境科学与技术, 2007, 30(11): 102-106 [7] Mishra S, Huang Y, Li J, et al. Biofilm-mediated bioremediation is a powerful tool for the removal of environmental pollutants. Chemosphere, 2022, 294: 133609 [8] 张君. 微生物群落在生物膜污水处理中的作用探讨. 河北省环境科学学会2021年科学技术年会, 石家庄, 2021: 41-46 [9] Koo H, Allan RN, Howlin RP, et al. Targeting microbial biofilms: Current and prospective therapeutic strategies. Nature Reviews Microbiology, 2017, 15: 740-755 [10] 陈园园. 生物膜结构、活性及硝化菌分布研究. 硕士论文. 西安: 西安建筑科技大学, 2017 [11] 叶联华, 黄云超, 杨达宽, 等. 聚氯乙烯材料表面细菌生物膜结构观察. 生物医学工程与临床, 2007, 11(4): 251-254 [12] 钟卫鸿, 叶海仁, 陈建孟, 等. 应用绿色荧光蛋白基因标记细菌进行生物膜结构定量化新方法. 环境科学, 2005, 26(4): 160-164 [13] 张蕊, 韩志英, 陈重军, 等. 生物膜型污水脱氮系统中膜结构及微生物生态研究进展. 生态学杂志, 2011, 30(11): 2628-2636 [14] 张燕, 胡学伟, 江孟, 等. Ca2+对生物膜形态结构及其组分的影响. 环境工程学报, 2015, 9(4): 1547-1552 [15] Yin W, Wang Y, Liu L, et al. Biofilms: The microbial ‘protective clothing' in extreme environments. International Journal of Molecular Sciences, 2019, 20: 3423 [16] 肖梦圆, 武瑞赟, 谭春明, 等. 群体感应系统及其抑制剂对细菌生物被膜调控的研究进展. 食品科学, 2020, 41(13): 227-234 [17] Wang MZ, He HZ, Zheng X, et al. Effect of Pseudomonas sp. HF-1 inoculum on construction of a bioaugmented system for tobacco wastewater treatment: Analysis from quorum sensing. Environmental Science and Pollution Research, 2014, 21: 7945-7955 [18] Hu HZ, He JG, Yu HR, et al. A strategy to speed up formation and strengthen activity of biofilms at low temperature. RSC Advances, 2017, 7: 22788-22796 [19] Zhang Y, Gu Y, Wu R, et al. Exploring the relationship between the signal molecule AI-2 and the biofilm formation of Lactobacillus sanfranciscensis. LWT-Food Science and Technology, 2022, 154: 112704 [20] Chua SL, Liu Y, Yam JKH, et al. Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles. Nature Communications, 2014, 5: 4462 [21] Tischler AD, Camilli A. Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Molecular Microbiology, 2004, 53: 857-869 [22] 唐婳, 刘国生, 谢志雄, 等. 细菌生物膜的结构及形成机制研究进展. 氨基酸和生物资源, 2006, 28(3): 30-33 [23] Fang F, Lu WT, Shan Q, et al. Characteristics of extracellular polymeric substances of phototrophic biofilms at different aquatic habitats. Carbohydrate Polymers, 2014, 106: 1-6 [24] Neu TR, Manz B, Volke F, et al. Advanced imaging techniques for assessment of structure, composition and function in biofilm systems. FEMS Microbiology Eco-logy, 2010, 72: 1-21 [25] Liu BH, Yu LC. In-situ, time-lapse study of extracellular polymeric substance discharge in Streptococcus mutans biofilm. Colloids and Surfaces B: Biointerfaces, 2017, 150: 98-105 [26] 吕梅乐, 朱亮, 戴昕, 等. 胞外蛋白对微生物聚集体的形成及其特性的影响. 应用生态学报, 2013, 24(3): 878-884 [27] Xing YH, Tan SX, Liu S, et al. Effective immobilization of heavy metals via reactive barrier by rhizosphere bacteria and their biofilms. Environmental Research, 2022, 207: 112080 [28] Hui C, Guo X, Sun PF, et al. Removal of nitrite from aqueous solution by Bacillus amyloliquefaciens biofilm adsorption. Bioresource Technology, 2018, 248: 146-152 [29] Sun PF, Hui C, Wang S, et al. Bacillus amyloliquefaciens biofilm as a novel biosorbent for the removal of crystal violet from solution. Colloids and Surfaces B: Biointerfaces, 2016, 139: 164-170 [30] Mishra S, Huang YH, Li JY, et al. Biofilm-mediated bioremediation is a powerful tool for the removal of environmental pollutants. Chemosphere, 2022, 294: 133609 [31] 武宇辉, 杨悦锁, 赵传起, 等. 水土环境中微生物胞外聚合物对污染物迁移和归宿影响的研究进展. 化工学报, 2018, 69(8): 3303-3317 [32] 姚敏杰, 连宾. 微生物絮凝剂对高浓度重金属离子废水絮凝作用研究. 环境科学与技术, 2009, 32(11): 1-4 [33] Lin J, Harichund C. Production and characterization of heavy-metal removing bacterial bioflocculants. African Journal of Biotechnology, 2012, 11: 9619-9629 [34] Bartrons M, Grimalt JO, Catalan J. Altitudinal distributions of BDE-209 and other polybromodiphenyl ethers in high mountain lakes. Environmental Pollution, 2011, 159: 1816-1822 [35] Mangwani N, Shukla SK, Kumari S, et al. Characterization of Stenotrophomonas acidaminiphila NCW-702 biofilm for implication in the degradation of polycyclic aromatic hydrocarbons. Journal of Applied Microbiology, 2014, 117: 1012-1024 [36] Xiao Y, Zhao F. Electrochemical roles of extracellular polymeric substances in biofilms. Current Opinion in Electrochemistry, 2017, 4: 206-211 [37] 谢淑仪, 陈姗姗, 栾天罡. 电活性微生物胞外聚合物的特征与应用. 微生物学报, 2023, 63(2): 540-552 [38] Lovley DR. Happy together: Microbial communities that hook up to swap electrons. The ISME Journal, 2017, 11: 327-336 [39] Yan WW, Sun FQ, Liu JB, et al. Enhanced anaerobic phenol degradation by conductive materials via EPS and microbial community alteration. Chemical Engineering Journal, 2018, 352: 1-9 [40] 张鹏. 电化学活性微生物胞外电子传递过程的强化及机制研究. 博士论文. 哈尔滨: 哈尔滨工业大学, 2018 [41] Abe K, Nomura N, Suzuki S. Biofilms: Hot spots of hori-zontal gene transfer (HGT) in aquatic environments, with a focus on a new HGT mechanism. FEMS Micro-biology Ecology, 2020, 96: fiaa031 [42] 刘娟, 凌婉婷, 盛月慧, 等. 根表功能细菌生物膜及其在土壤有机污染控制与修复中的潜在应用价值. 农业环境科学学报, 2013, 32(11): 2112-2117 [43] 全向春, 汤华, 呼丽娟, 等. 质粒pJP4水平转移介导生物膜系统强化降解2,4-D效应. 环境科学, 2009, 30(9): 2728-2734 [44] Lock MA, Wallace RR, Costerton JW, et al. River epi-lithon: Toward a structural-functional model. Oikos, 1984, 42: 10-22 [45] Tan CH, Lee KWK, Burmølle M, et al. All together now: Experimental multispecies biofilm model systems. Environmental Microbiology, 2017, 19: 42-53 [46] 孙晓, 江婕, 王强, 等. 大型污水厂中填料对A2O系统微生物种群的影响. 中国给水排水, 2022, 38(7): 63-68 [47] 严子春, 唐瑞祥, 吴大冰. 有机物对厌氧氨氧化生物膜反应器脱氮效能及微生物群落的影响. 环境科学学报, 2021, 41(4): 1303-1308 [48] 阿拉萨, 高广磊, 丁国栋, 等. 土壤微生物膜生理生态功能研究进展. 应用生态学报, 2022, 33(7): 1885-1892 [49] 岳艳利, 周林成, 王耀龙, 等. 微生物絮凝剂的制备及其应用研究进展. 水处理技术, 2012, 38(1): 6-9 [50] 聂林春. 小球藻对水体中重金属镉吸附性能研究. 硕士论文. 长春: 吉林大学, 2020 [51] 谢涤菲. 自然水体生物膜中巯基对铅、铜和镉的吸附特征研究. 硕士论文. 长春: 吉林大学, 2022 [52] Raklami A, Oufdou K, Tahiri AI, et al. Safe cultivation of Medicago sativa in metal-polluted soils from semi-arid regions assisted by heat- and metallo-resistant PGPR. Microorganisms, 2019, 7: 212 [53] 葛占标, 殷涂童, 周倩倩, 等. 产生物膜芽胞杆菌阻控叶菜吸收镉、铅及其修复菜地土壤的作用. 南京农业大学学报, 2020, 43(1): 80-88 [54] Dashko R, Shidlovskaya A. Impact of microbial activity on soil properties. Canadian Geotechnical Journal, 2016, 53: 1386-1397 [55] Aydln E,Şahin M, Taşkan E, et al. Chlortetracycline removal by using hydrogen based membrane biofilm reactor. Journal of Hazardous Materials, 2016, 320: 88-95 [56] 吴启龙. MBR系统处理渗滤液蒸馏废水影响条件的研究. 山西化工, 2021, 41(4): 190-194 [57] Nakhli SAA, Ahmadizadeh K, Farestehnejad M, et al. Biological removal of phenol from saline wastewater using a moving bed biofilm reactor containing acclimated mixed consortia. SpringerPlus, 2014, 3: 1-10 [58] Lerch TZ, Chenu C, Dignac MF, et al. Biofilm vs. planktonic lifestyle: Consequences for pesticide 2,4-D metabolism by Cupriavidus necator JMP134. Frontiers in Microbiology, 2017, 8: 904 [59] Kwak Y, Rhee IK, Shin JH. Application of biofilm-forming bacteria on the enhancement of organophos-phorus fungicide degradation. Bioremediation Journal, 2013, 17: 173-181 [60] Shimada K, Itoh Y, Washio K, et al. Efficacy of for-ming biofilms by naphthalene degrading Pseudomonas stutzeri T102 toward bioremediation technology and its molecular mechanisms. Chemosphere, 2012, 87: 226-233 [61] 赖英豪, 陈垚, 蒋彬, 等. 金属给水管道生物膜的形成与控制. 给水排水, 2023, 59(4): 139-148 [62] 李大圳, 章宇晴, 付茜茜, 等. 海洋环境暴露下生物膜对微塑料的理化性质和环境行为影响研究进展. 生态毒理学报, 2022, 17(3): 339-353 [63] Zettler ER, Mincer TJ, Amaral-Zettler LA. Life in the ‘plastisphere': Microbial communities on plastic marine debris. Environmental Science & Technology, 2013, 47: 7137-7146 [64] Luo HW, Liu CY, He DQ, et al. Environmental beha-viors of microplastics in aquatic systems: A systematic review on degradation, adsorption, toxicity and biofilm under aging conditions. Journal of Hazardous Materials, 2022, 423: 126915 [65] Sun YR, Yuan JH, Zhou T, et al. Laboratory simulation of microplastics weathering and its adsorption behaviors in an aqueous environment: A systematic review. Environmental Pollution, 2020, 265: 114864 [66] Richard H, Carpenter EJ, Komada T, et al. Biofilm facilitates metal accumulation onto microplastics in estua-rine waters. Science of the Total Environment, 2019, 683: 600-608 [67] Guan JN, Qi K, Wang JY, et al. Microplastics as an emerging anthropogenic vector of trace metals in fresh-water: Significance of biofilms and comparison with natural substrates. Water Research, 2020, 184: 116205 [68] 潘海霞, 段凯丰, 周秀艳, 等. 生物膜微塑料吸附重金属复合污染的研究进展. 环境科学与技术, 2023, 46(3): 90-96 [69] 金梦. 生物膜对微塑料富集疏水性有机物的影响机制. 硕士论文. 宁波: 宁波大学, 2020 [70] Wu X, Pan J, Li M, et al. Selective enrichment of bacterial pathogens by microplastic biofilm. Water Research, 2019, 165: 114979 [71] Junaid M, Siddiqui JA, Sadaf M, et al. Enrichment and dissemination of bacterial pathogens by microplastics in the aquatic environment. Science of the Total Environment, 2022, 830: 154720 [72] Zainab SM, Junaid M, Xu N, et al. Antibiotics and antibiotic resistant genes (ARGs) in groundwater: A global review on dissemination, sources, interactions, environmental and human health risks. Water Research, 2020, 187: 116455 [73] 涂杰. 再生水模拟管道内生物膜特性及抗生素抗性基因的分布. 硕士论文. 青岛: 青岛理工大学, 2020 [74] 刘晨旭, 白晓慧. 不同供水管材生物膜抗生素抗性基因分布特征. 环境科学, 2023, 44(3): 1537-1541 [75] Xu S, Tao L, Xia PH, et al. Algae composition and accumulation characteristics of heavy metals in epiphytic bioflioms of submerged macrophytes. Journal of Lake Sciences, 2019, 31: 1268-1278 [76] Li Z, Junaid M, Chen GL, et al. Interactions and associated resistance development mechanisms between microplastics, antibiotics, and heavy metals in the aquaculture environment. Reviews in Aquaculture, 2022, 14: 1028-1045 [77] Imran Md, Das KR, Naik MM. Co-selection of multi-antibiotic resistance in bacterial pathogens in metal and microplastic contaminated environments: An emerging health threat. Chemosphere, 2019, 215: 846-857 |