[1] 杨元合, 石岳, 孙文娟, 等. 中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献. 中国科学: 生命科学, 2022, 52(4): 534-574 [2] 王爱松. 《联合国气候变化框架公约》第26届缔约方大会谈判说明. 国际社会科学杂志, 2022, 39(2): 173-182 [3] Rogelj J, den Elzen M, Hoehne N, et al. Paris Agreement climate proposals need a boost to keep warming well below 2 ℃. Nature, 2016, 534: 631-639 [4] 于贵瑞, 郝天象, 朱剑兴. 中国碳达峰、碳中和行动方略之探讨. 中国科学院院刊, 2022, 37(4): 423-434 [5] 朱教君, 刘世荣. 森林干扰生态研究. 北京: 中国林业出版社, 2007 [6] Pan YD, Birdsey RA, Fang JY, et al. A large and persistent carbon sink in the world's forests. Science, 2011, 333: 988-993 [7] Pugh TAM, Lindeskog M, Smith B, et al. Role of forest regrowth in global carbon sink dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116: 4382-4387 [8] Zhu JJ, Sun YR, Zheng X, et al. A large carbon sink induced by the implementation of the largest afforestation program on earth. Ecological Processes, 2023, 12: 44 [9] Lu F, Hu HF, Sun WJ, et al. Effects of national ecolo-gical restoration projects on carbon sequestration in China from 2001 to 2010. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115: 4039-4044 [10] Xia XS, Ren PY, Wang XH, et al. The carbon budget of China: 1980-2021. Science Bulletin, 2024, 69: 114-124 [11] Sun YR, Zhu JJ, Yan QL, et al. Changes in vegetation carbon stocks between 1978 and 2007 in central Loess Plateau, China. Environmental Earth Sciences, 2016, 75: 1-16 [12] Harris NL, Gibbs DA, Baccini A, et al. Global maps of twenty-first century forest carbon fluxes. Nature Climate Change, 2021, 11: 234-240 [13] Williams RG, Katavouta A, Goodwin P. Carbon-cycle feedbacks operating in the climate system. Current Climate Change Reports, 2019, 5: 282-295 [14] Yang K, Zhang Q, Zhu JJ, et al. Mycorrhizal type regulates tradeoffs between plant and soil carbon in forests. Nature Climate Change, 2023, 14: 91-97 [15] Chapin FS, Matson PA, Vitousek PM. Water and Energy Balance, in Principles of Terrestrial Ecosystem Ecology. New York: Springer, 2011: 93-122 [16] Baldocchi DD. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Global Change Biology, 2003, 9: 479-492 [17] Aubinet M, Vesala T, Papale D. Eddy Covariance: A Practical Guide to Measurement and Data Analysis. New York: Springer, 2012: 438 [18] Schulze ED, Wirth C, Heimann M. Climate change-managing forests after Kyoto. Science, 2000, 289: 2058-2059 [19] Chapin FS, Matson PA, Vitousek PM. Plant Carbon Budgets, in Principles of Terrestrial Ecosystem Ecology. New York: Springer, 2011: 157-181 [20] Yang K, Zhu JJ, Zhang WW, et al. Litter decomposition and nutrient release from monospecific and mixed litters: Comparisons of litter quality, fauna and decomposition site effects. Journal of Ecology, 2022, 110: 1673-1686 [21] Odum EP. The strategy of ecosystem development. Science, 1969, 164: 262-270 [22] Curtis PS, Gough CM. Forest aging, disturbance and the carbon cycle. New Phytologist, 2018, 219: 1188-1193 [23] Jiang W, Aishan T, Halik Ü, et al. A bibliometric and visualized analysis of research progress and trends on decay and cavity trees in forest ecosystem over 20 years: An application of the cite space software. Forests, 2022, 13: 1437 [24] Zheng Z, Zhang SB, Baskin C, et al. Hollows in living trees develop slowly but considerably influence the estimate of forest biomass. Functional Ecology, 2015, 30: 830-838 [25] Coursolle C, Margolis HA, Giasson MA, et al. Influence of stand age on the magnitude and seasonality of carbon fluxes in Canadian forests. Agricultural and Forest Meteorology, 2012, 165: 136-148 [26] Parisa Z, Marland E, Sohngen B, et al. The time value of carbon storage. Forest Policy and Economics, 2022, 144: 102840 [27] Matthews HD, Gillett NP, Stott PA, et al. The proportionality of global warming to cumulative carbon emissions. Nature, 2009, 459: 829-832 [28] Richards KR. The time value of carbon in bottom-up studies. Critical Reviews in Environmental, Science and Technology, 1997, 27: S279-S292 [29] Matthews HD, Zickfeld K, Koch A, et al. Accounting for the climate benefit of temporary carbon storage in nature. Nature Communications, 2023, 14: 5485 [30] Bonan GB. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 2008, 320: 1444 [31] 朱教君, 王高峰, 张怀清, 等. 关于“气候智慧林业”研究的思考. 林业科学, 2024, 60(7): 1-7 [32] 全国绿化委员会办公室. 2022年中国国土绿化状况公报. 人民日报, 2023-03-12(001) [33] 李金良, 施志国. 林业碳汇项目方法学. 北京: 中国林业出版社, 2016 [34] 徐进勇. 中国潜在造林地及其气候生产潜力空间分布估算. 地理学报, 2023, 78(3): 677-693 [35] 朴世龙, 张新平, 陈安平, 等. 极端气候事件对陆地生态系统碳循环的影响. 中国科学: 地球科学, 2019, 49(9): 1321-1334 [36] 汪丹. 近40年最严重林火肆虐加拿大,一国之灾已发展为全球性环境事件. 北京日报, 2023-09-05 [37] 刘魏魏, 王效科, 逯非, 等. 造林再造林、森林采伐、气候变化、CO2浓度升高、火灾和虫害对森林固碳能力的影响. 生态学报, 2016, 36(8): 2113-2122 [38] Dymond CC, Neilson ET, Stinson G, et al. Future spruce budworm outbreak may create a carbon source in eastern Canadian forests. Ecosystems, 2010, 13: 917-931 [39] 劳万里, 段新芳, 吕斌. 木材工业助力“双碳”目标大有可为. 中国绿色时报, 2022-01-07 [40] Upton B, Miner R, Spinney M, et al. The greenhouse gas and energy impacts of using wood instead of alternatives in residential construction in the United States. Biomass & Bioenergy, 2008, 32: 1-10 [41] 高颖. 木结构低碳可持续发展优势分析. 建筑, 2022(16): 19-21 |