[1] 李少锋. 林木木材形成机制及材性改良研究进展. 温带林业研究, 2019, 2(2): 40-47 [2] Wheeler EA, Baas P. Wood identification: A review. IAWA Journal, 1998, 19: 241-264 [3] Gao MY, Qi DW, Mu HB, et al. A transfer residual neural network based on ResNet-34 for detection of wood knot defects. Forests, 2021, 12: 212 [4] Schimleck LR, Evans R, Ilic J. Estimation of Eucalyptus delegatensis wood properties by near infrared spectroscopy. Canadian Journal of Forest Research, 2001, 31: 1671-1675 [5] Downes GM, Touza M, Harwood C, et al. NIR detection of non-recoverable collapse in sawn boards of Eucalyptus globulus. European Journal of Wood and Wood Pro-ducts, 2014, 72: 563-570 [6] Yu L, Liang YL, Zhang YZ, et al. Mechanical properties of wood materials using near-infrared spectroscopy based on correlation local embedding and partial least-squares. Journal of Forestry Research, 2020, 31: 1053-1060 [7] Schimleck LR, de Matos JLM, Da Silva Oliveira JT, et al. Non-destructive estimation of pernambuco (Caesalpinia echinata) clear wood properties using near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 2011, 19: 411-419 [8] 丁丽, 相玉红, 黄安民, 等. BP神经网络与近红外光谱定量预测杉木中的综纤维素、木质素、微纤丝角. 光谱学与光谱分析, 2009, 29(7): 1784-1787 [9] 孙柏玲, 柴宇博, 黄安民, 等. 近红外光谱法在慈竹微纤丝角和纤维长度分析中的应用. 光谱学与光谱分析, 2011, 31(12): 3251-3255 [10] Cheng JH, Sun DW. Partial least squares regression (PLSR) applied to NIR and HSI spectral data modeling to predict chemical properties of fish muscle. Food Engineering Reviews, 2017, 9: 36-49 [11] Ozaki Y, Huck C, Tsuchikawa S, et al. Near-infrared spectroscopy: Theory, spectral analysis, instrumentation, and applications// Ozaki Y, Morita S, Morisawa Y, eds. Spectral Analysis in the NIR Spectroscopy. Singapore: Springer, 2021: 63-82 [12] 武斌, 沈嘉棋, 汪鑫, 等. 主成分分析排序和模糊线性判别分析的生菜近红外光谱分类. 光谱学与光谱分析, 2022, 42(10): 3079-3083 [13] 罗批, 郭继昌, 李锵, 等. 基于偏最小二乘回归建模的探讨. 天津大学学报, 2002, 35(6): 783-786 [14] 姚允龙, 王欣, 谭霄鹏, 等. 基于PLSR的典型沼泽湿地植物叶片性状与光谱模型构建: 以三江国家级自然保护区为例. 地理科学, 2022, 42(9): 1638-1645 [15] Li YJ, Dong X, Sun Y, et al. An efficient method to reduce grain angle influence on NIR spectra for predicting extractives content from heartwood stem cores of Toona sinensis. Plant Methods, 2020, 16: 77 [16] Isaksson T, Næs T. The effect of multiplicative scatter correction (MSC) and linearity improvement in NIR spectroscopy. Applied Spectroscopy, 1988, 42: 1273-1284 [17] 曹晓兰, 邓梦洁, 汪佩佩. 基于PLSR的苎麻叶片含水量估测模型建立及优化. 激光生物学报, 2018, 27(5): 467-473 [18] Bin J, Ai FF, Fan W, et al. An efficient variable selection method based on variable permutation and model population analysis for multivariate calibration of NIR spectra. Chemometrics and Intelligent Laboratory Systems, 2016, 158: 1-13 [19] 江泽慧, 黄安民, 王斌. 木材不同切面的近红外光谱信息与密度快速预测. 光谱学与光谱分析, 2006, 26(6): 1034-1037 [20] Tong L, Zhang WB. Using Fourier transform near-infrared spectroscopy to predict the mechanical properties of thermally modified southern pine wood. Applied Spectroscopy, 2016, 70: 1676-1684 [21] 汪睿, 石兰兰, 王玉荣. 利用近红外光谱技术快速预测楸树木材抗弯性质. 光谱学与光谱分析, 2023, 43(2): 557-562 [22] 赵荣军, 张黎, 霍小梅, 等. 基于近红外光谱技术预测径/弦切面粗皮桉木材微纤丝角. 光谱学与光谱分析, 2010, 30(9): 2355-2359 [23] 王云鹏, 张蕊, 周志春, 等. 10年生木荷生长和材性性状家系变异及选择. 南京林业大学学报: 自然科学版, 2020, 44(5): 85-92 [24] 张蕊, 王艺, 金国庆, 等. 模拟氮沉降对低磷胁迫下3个种源木荷幼苗生长及叶片氮磷含量的影响. 林业科学, 2015, 51(4): 36-43 [25] 王淼, 吴国亮, 张蕊, 等. 木荷18年生种源生长、材性的地理种源变异. 应用生态学报, 2023, 34(9): 2337-2344 [26] 王家燚, 陈焕伟, 张蕊, 等. 木荷全同胞家系生长与分枝性状的遗传变异及效应分析. 浙江农林大学学报, 2023, 40(4): 738-746 [27] 徐肇友, 王云鹏, 肖纪军, 等. 不同产地木荷优树无性系表型多样性. 东北林业大学学报, 2021, 49(2): 5-10 [28] 文国卫, 黄秋良, 吕增伟, 等. 气候变化情境下木荷潜在地理分布及生态适宜性分析. 生态学报, 2023, 43(16): 6617-6626 [29] Wang YP, Zhang R, Zhou ZC. Radial variation of wood anatomical properties determines the demarcation of juvenile-mature wood in Schima superba. Forests, 2021, 12: 512 [30] 楚秀丽, 王艺, 金国庆, 等. 不同生境、初植密度及林龄木荷人工林生长、材性变异及林分分化. 林业科学, 2014, 50(6): 152-159 [31] 周志春, 范辉华, 金国庆, 等. 木荷地理遗传变异和优良种源初选. 林业科学研究, 2006, 19(6): 718-724 [32] 王秀花, 马丽珍, 马雪红, 等. 木荷人工林生长和木材基本密度. 林业科学, 2011, 47(7): 138-144 [33] 张萍, 周志春, 金国庆, 等. 木荷种源遗传多样性和种源区初步划分. 林业科学, 2006, 42(2): 38-42 [34] Mensah BJK, Luboš B, Prince CA, et al. Comparison of field and laboratory wet soil spectra in the vis-nir range for soil organic carbon prediction in the absence of laboratory dry measurements. Remote Sensing, 2020, 12: 3082 [35] Upadhyay V, Kandpal KC, Jaiswal S, et al. Revisit and optimisation of spectral data collection techniques from vegetation using hand held non-imaging spectroscopic sensor for minimising errors. Vibrational Spectroscopy, 2020, 111: 103159 [36] Rossel RV, Mcbratney AB. Laboratory evaluation of a proximal sensing technique for simultaneous measurement of soil clay and water content. Geoderma, 1998, 85: 19-39 [37] Baumgardner MF, Silva LF, Biehl LL, et al. Reflectance properties of soils. Advances in Agronomy, 1986, 38: 1-44 [38] Mouazen AM, De Baerdemaeker J, Ramon H. Towards development of on-line soil moisture content sensor using a fibre-type NIR spectrophotometer. Soil and Tillage Research, 2005, 80: 171-183 [39] Schimleck LR, Stürzenbecher R, Mora C, et al. Comparison of Pinus taeda L. wood property calibrations based on NIR spectra from the radial-longitudinal and radial-transverse faces of wooden strips. Holzforschung, 2005, 59: 214-218 [40] Liu TT, Wang ZL, Zhang T, et al. Classification of su-gar content of kiwi fruit based on deep learning and near infrared spectrum. Research Square, 2023, DOI: 10.21203/rs.3.rs-3799363/v1 [41] Liang L, Wei LL, Fang GG, et al. Prediction of holocellulose and lignin content of pulp wood feedstock using near infrared spectroscopy and variable selection. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 225: 117515 |