[1] IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group Ⅰ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2021 [2] 李彦生, 金剑, 刘晓冰. 作物对大气CO2浓度升高生理响应研究进展. 作物学报, 2020, 46(12): 1819-1830 [3] Lin ED, Xiong W, Ju H, et al. Climate change impacts on crop yield and quality with CO2 fertilization in China. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360: 2149-2154 [4] Wang Y, Wang JM, Zhai LY, et al. Identify QTLs and candidate genes underlying source-, sink-, and grain yield-related traits in rice by integrated analysis of biparental and natural populations. PLoS One, 2020, 15(8): e0237774 [5] 王兴才, 杨文钰. 基于间套作弱光胁迫下作物源库协调与产量研究进展. 中国油料作物学报, 2019, 41(2): 292-299 [6] 张宇, 赵宝平, 柳妍娣, 等. 施氮量对裸燕麦源库生理特性和茎鞘NSC积累与转运的影响. 麦类作物学报, 2024, 44(2): 206-213 [7] Sonnewald U, Fernie AR. Next-generation strategies for understanding and influencing source-sink relations in crop plants. Current Opinion in Plant Biology, 2018, 43: 63-70 [8] Wang SH, Zhang YG, Ju WM, et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science, 2020, 370: 1295-1300 [9] 张超男. 不同施肥方式对超高产夏玉米群体质量和源库代谢的影响. 硕士论文. 郑州: 河南农业大学, 2008 [10] 许育彬, 沈玉芳, 李世清. CO2浓度升高和施氮对冬小麦光合面积及粒叶比的影响. 中国生态农业学报, 2013, 21(9): 1049-1056 [11] 牛晓光, 杨荣全, 李明, 等. 大气CO2浓度升高与氮肥互作对玉米光合特性及产量的影响. 中国生态农业学报, 2020, 28(2): 255-264 [12] Ainsworth EA, Long SP. 30 years of free-air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation? Global Change Biology, 2021, 27: 27-49 [13] Hu SW, Wang Y, Yang LX. Response of rice yield traits to elevated atmospheric CO2 concentration and its interaction with cultivar, nitrogen application rate and temperature: A meta-analysis of 20 years FACE studies. Science of the Total Environment, 2021, 764: 142797 [14] 王飞, 郭彬彬, 孙增光, 等. 增温增CO2浓度对玉米‖花生体系玉米生长发育及产量的影响. 作物学报, 2021, 47(11): 2220-2231 [15] 王飞, 孙增光, 尹飞, 等. 增温增CO2对间作玉米光合特性的影响. 中国农业科学, 2021, 54(1): 58-70 [16] Li PL, Weng JY, Zhang Q, et al. Physiological and biochemical responses of Cucumis melo L. chloroplasts to low-phosphate stress. Frontiers in Plant Science, 2018, 9: 1525 [17] Nasar J, Khan W, Khan MZ, et al. Photosynthetic activities and photosynthetic nitrogen use efficiency of maize crop under different planting patterns and nitrogen fertilization. Journal of Soil Science and Plant Nutrition, 2021, 21: 2274-2284 [18] Wang Y, Huang YY, Song L, et al. Reduced phospho-rus availability in paddy soils under atmospheric CO2 enrichment. Nature Geoscience, 2023, 16: 162-168 [19] Hiroyuki S, Masumi O, Yasuhiro Y, et al. Genotypic variation in rice yield enhancement by elevated CO2 relates to growth before heading, and not to maturity group. Journal of Experimental Botany, 2009, 60: 523-532 [20] 张瑾涛, 沈玉芳, 李世清. CO2浓度和磷对不同种植方式玉米大豆生长效应研究. 西北植物学报, 2013, 33(3): 577-584 [21] 翟新然, 王勤俭, 赵雪梅. 夏玉米源库性状对群体渐增变化的响应. 大麦与谷类科学, 2022, 39(4): 27-35 [22] 陈俊南, 姜文洋, 昝志曼, 等. 玉米花生同垄间作对作物光合特性和间作优势的影响. 应用生态学报, 2023, 34(10): 2672-2682 [23] 李宏志, 卓从丽, 廖斌, 等. 种植密度对不同株型春玉米品种源库关系及产量的影响. 湖南农业科学, 2019(11): 25-27 [24] 马超, 王同朝, 杜园园, 等. 不同控释肥对夏玉米源库流特性的影响. 河南农业大学学报, 2009, 43(5): 480-484 [25] 李宁, 翟志席, 李建民, 等. 播期与密度组合对夏玉米群体源库关系及冠层透光率的影响. 中国生态农业学报, 2010, 18(5): 959-964 [26] Taylor G, Tricker PJ, Zhang FZ, et al. Spatial and temporal effects of free-air CO2 enrichment (POPFACE) on leaf growth, cell expansion, and cell production in a closed canopy of poplar. Plant Physiology, 2003, 131: 177-185 [27] 李雪, 刘娟, 薛华龙, 等. 玉米和花生间作体系光合碳同化酶活性对CO2浓度升高的响应特征. 西北植物学报, 2021, 41(7): 1210-1220 [28] 战秀梅, 韩晓日, 王帅, 等. 不同施肥对春玉米源库特征及其关系的影响. 土壤通报, 2008, 39(4): 887-891 [29] Bourgault M, Brand J, Tausz-Posch S, et al. Yield, growth and grain nitrogen response to elevated CO2 in six lentil (Lens culinaris) cultivars grown under Free Air CO2 Enrichment (FACE) in a semi-arid environment. European Journal of Agronomy, 2017, 87: 50-58 [30] Jiao NY, Wang F, Ma C, et al. Interspecific interactions of iron and nitrogen use in peanut (Arachis hypogaea L.)-maize (Zea mays L.) intercropping on a calcareous soil. European Journal of Agronomy, 2021, 128: 126303 [31] Zuo YM, Liu YX, Zhang FS, et al. A study on the improvement iron nutrition of peanut intercropping with maize on nitrogen fixation at early stages of growth of peanut on a calcareous soil. Soil Science and Plant Nutrition, 2004, 50: 1071-1078 [32] Rogers GS, Milham PJ, Gillings M, et al. Sink strength may be the key to growth and nitrogen responses in N-deficient wheat at elevated CO2. Functional Plant Bio-logy, 1996, 23: 253-264 [33] Jiao NY, Wang JT, Ma C, et al. The importance of aboveground and belowground interspecific interactions in determining crop growth and advantages of peanut/maize intercropping. Crop Journal, 2021, 9: 1460-1469 [34] 赵建华, 孙建好, 李伟绮. 玉米播期对大豆/玉米间作产量及种间竞争力的影响. 中国生态农业学报, 2018, 26(11): 1634-1642 [35] Gamage D, Thompson M, Sutherland M, et al. New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide concentrations. Plant, Cell and Environment, 2018, 41: 1233-1246 [36] Ainsworth EA. Rice production in a changing climate: A meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. Global Change Bio-logy, 2008, 14: 1642-1650 [37] 张凯, 王润元, 王鹤龄, 等. CO2浓度升高对半干旱区春小麦生长发育及产量影响的试验研究. 干旱气象, 2017, 35(2): 306-312 [38] 吴克宁, 赵彦锋, 吕巧灵, 等. 潮土区灌浆水和施磷对冬小麦光合作用和产量的影响. 植物营养与肥料学报, 2002, 8(4): 428-434 [39] 农玉琴, 陆金梅, 骆妍妃, 等. 不同磷水平下玉米-大豆间作对根系有机酸分泌特征及磷吸收的影响. 中国土壤与肥料, 2022(7): 41-48 |