[1] 吴振斌. 大型水生植物对藻类的化感作用. 北京: 科学出版社, 2016: 19-36 [2] 邹丽莎, 聂泽宇, 姚笑颜, 等. 富营养化水体中光照对沉水植物的影响研究进展. 应用生态学报, 2013, 24(7): 2073-2080 [3] Peng X, Lin QW, Liu BY, et al. Effect of submerged plant coverage on phytoplankton community dynamics and photosynthetic activity in situ. Journal of Environmental Management, 2022, 301: 113822 [4] He Y, Zhou QH, Liu BY, et al. Programmed cell death in the cyanobacterium Microcystis aeruginosa induced by allelopathic effect of submerged macrophyte Myriophyllum spicatum in co-culture system. Journal of Applied Phycology, 2016, 28: 2805-2814 [5] Nakai S, Inoue Y, Hosomi M, et al. Growth inhibition of blue-green algae by allelopathic effects of macrophytes. Water Science and Technology, 1999, 39: 47-53 [6] Gao YN, Fu QQ, Lu J, et al. Enhanced pyrogallol toxicity to cyanobacterium Microcystis aeruginosa with increasing alkalinity. Journal of Applied Phycology, 2020, 32: 1827-1835 [7] Nakai S, Asaoka S, Okuda T, et al. Growth inhibition of Microcystis aeruginosa by allelopathic compounds originally isolated from Myriophyllum spicatum: Temperature and light effects and evidence of possible major mechanisms. Journal of Chemical Engineering of Japan, 2014, 47: 488-493 [8] 昂正强, 孙晓健, 曹新益, 等. 不同沉水植物叶片附着细菌群落多样性及网络结构差异. 湖泊科学, 2022, 34(4): 1234-1249 [9] Hilt S, Ghobrial MGN, Gross EM. In situ allelopathic potential of Myriophyllum verticillatum (Haloragaceae) against selected Phytoplankton species. Journal of Phyco-logy, 2006, 42: 1189-1198 [10] Ren LM, Gao Y, Hu ZX, et al. The growth of Vallisneria natans and its epiphytic biofilm in simulated nutrient-rich flowing water. Water, 2022, 14: 2236 [11] 李菁, 张小飞, 张惠雯, 等. 盐胁迫对白及根际细菌群落组成及多样性的影响. 应用生态学报, 2024, 35(1): 219 [12] Chen HZ, Zhang SH, Lv X, et al. Interactions between suspended sediments and submerged macrophytes-epiphytic biofilms under water flow in shallow lakes. Water Research, 2022, 222: 118911 [13] Deng HY, Li QS, Li MY, et al. Epiphytic microorganisms of submerged macrophytes effectively contribute to nitrogen removal. Environmental Research, 2024, 242: 117754 [14] Geng N, Xia YF, Lu DB, et al. The bacterial community structure in epiphytic biofilm on submerged macrophyte Potamogetom crispus L. and its contribution to heavy metal accumulation in an urban industrial area in Hangzhou. Journal of Hazardous Materials, 2022, 430: 128455 [15] Hu SW, He RJ, He XW, et al. Niche-specific restructuring of bacterial communities associated with submerged macrophyte under ammonium stress. Applied and Environmental Microbiology, 2023, 89: e00717-23 [16] Song YZ, Wang JQ, Gao YX. Effects of epiphytic algae on biomass and physiology of Myriophyllum spicatum L. with the increase of nitrogen and phosphorus availability in the water body. Environmental Science and Pollution Research, 2017, 24: 9548-9555 [17] 宋玉芝, 秦伯强, 高光. 附着生物对太湖沉水植物影响的初步研究. 应用生态学报, 2007, 18(4): 928-932 [18] Yan LL, Mu XY, Han B, et al. Ammonium loading disturbed the microbial food webs in biofilms attached to submersed macrophyte Vallisneria natans. Science of the Total Environment, 2019, 659: 691-698 [19] Gao YN, Yang H, Li LF, et al. Higher resistance of a microcystin (MC)-producing cyanobacterium, Microcystis to the submerged macrophyte Myriophyllum spicatum. Environmental Science and Pollution Research, 2023, 30: 63941-63952 [20] Li Q, Gu P, Zhang H, et al. Response of submerged macrophytes and leaf biofilms to the decline phase of Microcystis aeruginosa: Antioxidant response, ultrastructure, microbial properties, and potential mechanism. Science of the Total Environment, 2020, 699: 134325 [21] Zhang WZ, Gu P, Zheng XW, et al. Ecological damage of submerged macrophytes by fresh cyanobacteria (FC) and cyanobacterial decomposition solution (CDS). Journal of Hazardous Materials, 2021, 401: 123372 [22] He ZX, Xia WT, Yang XH, et al. Joint actions of Myriophyllum verticillatum L. and its rhizospheric microorganisms on Microcystis aeruginosa and the mathematical model analysis. Journal of Hygiene Research, 2015, 44: 959 [23] 王文卿, 沈盎绿. 香樟和银杏落叶海水浸提液对东海原甲藻的抑藻效应及其有效成分分析. 海洋渔业, 2024, 46(1): 96-109 [24] Chen SF, Zhou YQ, Chen YR, et al. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34: i884-i890 [25] Wang Q, Garrity GM, Tiedje JM, et al. Nave Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 2007, 73: 5261-5267 [26] 梁延鹏, 王婧, 钱丽, 等. 磺胺类抗生素对斜生栅藻的协同和拮抗作用研究. 生态毒理学报, 2022, 17(1): 244-254 [27] 张本浩, 丁惠君, 吴亦潇, 等. 3种天然介体物质对铜绿微囊藻的毒性效应研究. 环境科学与技术, 2019, 42(10): 71-77 [28] Dai RH, Liu HJ, Qu JH, et al. Effects of amino acids on microcystin production of the Microcystis aeruginosa. Journal of Hazardous Materials, 2009, 161: 730-736 [29] 李超, 于舒淼, 徐彩彩, 等. 黄酮化合物对球形棕囊藻(Phaeocystis globosa)生长和光合活性的影响. 海洋与湖沼, 2019, 50(4): 851-857 [30] 刘玉, 魏洁, 李艳萍. 红树植物根系分泌物壬二酸对海洋原甲藻的影响. 海洋学报, 2013, 35(3): 239-245 [31] 伏靖, 王何瑜, 胡媛, 等. 葡萄糖酸钠对三角褐指藻岩藻黄素与中性脂肪酸的影响. 核农学报, 2023, 37(12): 2342-2348 [32] 侯新星, 田如男. 有机酸对铜绿微囊藻生长及光合色素的影响. 生物学杂志, 2021, 38(4): 65-70 [33] 张忠良, 胡兴龙, 马增岭, 等. 溶藻细菌及其作用物质研究进展. 现代农业科技, 2023(19): 143-149 [34] Su JF, Shao SC, Huang TL, et al. Algicidal effects and denitrification activities of Acinetobacter sp. J25 against Microcystis aeruginosa. Journal of Environmental Chemical Engineering, 2016, 4: 1002-1007 [35] 邓信爽, 代群威, 胡鸿, 等. 溶藻菌H6对铜绿微囊藻的溶藻特性研究. 环境污染与防治, 2023, 45(3): 300-304 [36] Tian C, Liu XL, Tan J, et al. Isolation, identification and characterization of an algicidal bacterium from lake Taihu and preliminary studies on its algicidal compounds. Journal of Environmental Sciences, 2012, 24: 1823-1831 [37] Wang JX, Luo L, Chen YC, et al. Spectra characteristic and algicidal mechanism of Chryseobaterium sp. S7 on Microcystis aeruginosa. Spectroscopy and Spectral Analysis, 2019, 39: 1817-1822 [38] 李晓英, 陈义华, 赵裕超, 等. 解淀粉芽孢杆菌化感作用对球等鞭金藻生长抑制效果. 海洋科学, 2021, 45(1): 62-69 [39] Shao J, Jiang Y, Wang Z, et al. Interactions between algicidal bacteria and the cyanobacterium Microcystis aeruginosa: Lytic characteristics and physiological responses in the cyanobacteria. International Journal of Environmental Science and Technology, 2014, 11: 469-476 [40] Wang SQ, Yang SY, Zuo J, et al. Simultaneous removal of the freshwater bloom-forming cyanobacterium Microcystis and cyanotoxin microcystins via combined use of algicidal bacterial filtrate and the microcystin-degrading enzymatic agent, MlrA. Microorganisms, 2021, 9: 1594 [41] 刘爱民, 闪雅婷, 卢存龙, 等. 链霉菌WH63的抑藻效应. 环境工程学报, 2016, 10(7): 3931-3936 [42] Canter HM. Fungal parasites of the phytoplankton. Ⅱ. Studies on British Chytrids, Ⅻ. Annals of Botany, 1951: 129-156 [43] 刘玉, 路宁宁, 张俊帆, 等. 深圳湾福田红树林区藻类、纤毛虫等生物群落及其与环境的关系. 热带海洋学报, 2006, 25(5): 56-62 [44] 李静, 卢文轩, 张雷燕, 等. 夏季蓝藻水华期间太湖河口区和敞水区纤毛虫群落组成及水平分布. 水生生物学报, 2014, 38(5): 860-867 |