[1] Flannigan M, Stocks B, Turetsky M, et al. Impacts of climate change on fire activity and fire management in the circumboreal forest. Global Change Biology, 2009, 15: 549-560 [2] Turetsky MR, Kane ES, Harden JW, et al. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nature Geoscience, 2011, 4: 27-31 [3] 国家林业局, 国家发展改革委, 财政部. 国家林业局国家发展改革委财政部联合印发《全国森林防火规划(2016—2025年)》. 中国应急管理, 2017(1): 34-44 [4] Adab H, Kanniah KD, Solaimani K. Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques. Natural Hazards, 2013, 65: 1723-1743 [5] Eugenio FC, dos Santos AR, Fiedler NC, et al. Appl-ying GIS to develop a model for forest fire risk: A case study in Espirito Santo, Brazil. Journal of Environmental Management, 2016, 173: 65-71 [6] Guo FT, Su ZW, Wang GY, et al. Wildfire ignition in the forests of southeast China: Identifying drivers and spatial distribution to predict wildfire likelihood. Applied Geography, 2016, 66: 12-21 [7] Naderpour M, Rizeei HM, Khakzad N, et al. Forest fire induced Natech risk assessment: A survey of geospatial technologies. Reliability Engineering & System Safety, 2019, 191: 106558 [8] 张恒, 李慧, 赵鹏武. 内蒙古森林火灾发生风险及其驱动因素. 生态学报, 2024, 44(13): 5669-5683 [9] 王姊辉, 董恒, 赵洋甬, 等. 应用机器学习模型对中国云贵川区域林火风险预测. 东北林业大学学报, 2023, 51(5): 113-119 [10] Ray SK. Flood risk index mapping in data scarce region by considering GIS and MCDA (FRI mapping in data scarce region by considering GIS and MCDA). Environment Development and Sustainability, 2024, doi: 10.1007/s10668-024-04641-2 [11] Sari F. Assessment of the effects of different variable weights on wildfire susceptibility. European Journal of Forest Research, 2024, doi: 10.1007/s10342-023-01643-z [12] Ghorbanzadeh O, Feizizadeh B, Blaschke T, et al. Multi-criteria risk evaluation by integrating an analytical network process approach into GIS-based sensitivity and uncertainty analyses. Geomatics Natural Hazards & Risk, 2018, 9: 127-151 [13] Jaafari A. LiDAR-supported prediction of slope failures using an integrated ensemble weights-of-evidence and analytical hierarchy process. Environmental Earth Sciences, 2018, 77: 42 [14] Mohammed OA, Vafaei S, Kurdalivand MM, et al. A comparative study of forest fire mapping using GIS-based data mining approaches in Western Iran. Sustainability, 2022, 14: 13625 [15] Qazi A, Singh K, Vishwakarma DK, et al. GIS based landslide susceptibility zonation mapping using frequency ratio, information value and weight of evidence: A case study in Kinnaur District HP India. Bulletin of Enginee-ring Geology and the Environment, 2023, 82: 332 [16] Nami MH, Jaafari A, Fallah M, et al. Spatial prediction of wildfire probability in the Hyrcanian ecoregion using evidential belief function model and GIS. International Journal of Environmental Science and Technology, 2018, 15: 373-384 [17] Sivrikaya F, Kucuk O. Modeling forest fire risk based on GIS-based analytical hierarchy process and statistical analysis in Mediterranean region. Ecological Informatics, 2022, 68: 101537 [18] Salavati G, Saniei E, Ghaderpour E, et al. Wildfire risk forecasting using weights of evidence and statistical index models. Sustainability, 2022, 14: 3881 [19] Saha A, Saha S. Comparing the efficiency of weight of evidence, support vector machine and their ensemble approaches in landslide susceptibility modelling: A study on Kurseong region of Darjeeling Himalaya, India. Remote Sensing Applications: Society and Environment, 2020, 19: 100323 [20] Hong HY, Jaafari A, Zenner EK. Predicting spatial patterns of wildfire susceptibility in the Huichang County, China: An integrated model to analysis of landscape indicators. Ecological Indicators, 2019, 101: 878-891 [21] Saleh A, Yuzir A, Sabtu N, et al. Flash flood susceptibility mapping in urban area using genetic algorithm and ensemble method. Geocarto International, 2022, 37: 10199-10228 [22] 贾钰宸, 常禹, 平晓莹, 等. 不同烈度林火干扰下呼中国家级自然保护区森林各碳库储量的动态变化. 应用生态学报, 2021, 32(7): 2325-2334 [23] 张运林, 田玲玲, 丁波, 等. 贵州省林火发生驱动因子及预测模型. 生态学杂志, 2024, 43(1): 282-289 [24] Gong AD, Huang ZQ, Liu LF, et al. Development of an index for forest fire risk assessment considering hazard factors and the hazard-formative environment. Remote Sensing, 2023, 15: 5077 [25] Xiao YD, Zhang XQ, Ji P. Modeling forest fire occurrences using count-data mixed models in Qiannan Auto-nomous Prefecture of Guizhou Province in China. PLoS One, 2015, 10(3): e0120621 [26] 欧阳逸云, 苏漳文, 李春辉, 等. 基于模糊逻辑和网络层次分析法的森林火险区划. 应用生态学报, 2024, 35(2): 354-362 [27] Malczewski J. GIS-based multicriteria decision analysis: A survey of the literature. International Journal of Geographical Information Science, 2006, 20: 703-726 [28] Scaduto E, Chen B, Jin YF. Satellite-based fire progression mapping: A comprehensive assessment for large fires in Northern California. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sen-sing, 2020, 13: 5102-5114 [29] Jaafari A, Gholami DM, Zenner EK. A Bayesian mode-ling of wildfire probability in the Zagros mountains, Iran. Ecological Informatics, 2017, 39: 32-44 [30] 田晓瑞, 代玄, 王明玉, 等. 多气候情景下中国森林火灾风险评估. 应用生态学报, 2016, 27(3): 769-776 [31] Gheshlaghi HA, Feizizadeh B, Blaschke T. GIS-based forest fire risk mapping using the analytical network process and fuzzy logic. Journal of Environmental Planning and Management, 2020, 63: 481-499 [32] Sivrikaya F, Gunlu A, Kucuk O, et al. Forest fire risk mapping with Landsat 8 OLI images: Evaluation of the potential use of vegetation indices. Ecological Informa-tics, 2024, 79: 102461 [33] 鲁义, 周钦云, 邵淑珍, 等. 气候因子对我国森林火灾的影响及预测. 中国安全科学学报, 2023, 33(12): 53-59 [34] Ma WY, Feng ZK, Cheng ZX, et al. Identifying forest fire driving factors and related impacts in China using random forest algorithm. Forests, 2020, 11: 507 [35] 曾爱聪, 蔡奇均, 苏漳文, 等. 基于MODIS卫星火点的浙江省林火季节变化及驱动因子. 应用生态学报, 2020, 31(2): 399-406 [36] Guo FT, Wang GY, Su ZW, et al. What drives forest fire in Fujian, China? Evidence from logistic regression and Random Forests. International Journal of Wildland Fire, 2016, 25: 505-519 [37] Li WH, Xu QL, Yi JH, et al. Predictive model of spatial scale of forest fire driving factors: A case study of Yunnan Province, China. Scientific Reports, 2022, 12: 19029 [38] Balogun AL, Sheng TY, Sallehuddin MH, et al. Assessment of data mining, multi-criteria decision making and fuzzy-computing techniques for spatial flood susceptibility mapping: A comparative study. Geocarto Interna-tional, 2022, 37: 12989-13015 [39] Nachappa TG, Piralilou ST, Gholamnia K, et al. Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory. Journal of Hydrology, 2020, 590: 125275 |