[1] 章守宇, 刘书荣, 周曦杰, 等. 大型海藻生境的生态功能及其在海洋牧场应用中的探讨. 水产学报, 2019, 43(9): 2004-2014 [2] Evans DR, Wilson KS, Field NS, et al. Importance of macroalgal fields as coral reef fish nursery habitat in north-west Australia. Marine Biology, 2014, 161: 599-607 [3] 胡闪闪, 邹定辉, 周凯, 等. 深圳东部海域海藻场大型海藻生态服务价值评估. 生态学杂志, 2024, 43(1): 224-233 [4] 刘卫云, 章守宇, 王凯, 等. 枸杞岛海域春季异养浮游细菌和生态环境因子关系初步研究. 上海海洋大学学报, 2011, 20(3): 437-444 [5] Frontier N, de Bettignies F, Foggo A, et al. Sustained productivity and respiration of degrading kelp detritus in the shallow benthos: Detached or broken, but not dead. Marine Environmental Research, 2021, 166: 105277 [6] Barrón C, Apostolaki ET, Duarte CM. Dissolved organic carbon fluxes by seagrass meadows and macroalgal beds. Frontiers in Marine Science, 2014, 1: 42 [7] 董世淇, 张合烨, 孙国庆, 等. 北黄海褡裢岛海藻场邻近海域大型底栖动物群落营养结构的季节变化. 应用生态学报, 2023, 34(7): 1763-1770 [8] Krause-Jensen D, Lavery P, Serrano O, et al. Sequestration of macroalgal carbon: The elephant in the blue carbon room. Biology Letters, 2018, 14: 20180236 [9] Krumhansl K, Scheibling RE. Production and fate of kelp detritus. Marine Ecology Progress Series, 2012, 467: 281-302 [10] Krause-Jensen D, Duarte MC. Substantial role of macroalgae in marine carbon sequestration. Nature Geoscience, 2016, 9: 737-742 [11] Filbee-Dexter K, Wernberg T, Norderhaug KM, et al. Movement of pulsed resource subsidies from kelp forests to deep fjords. Oecologia, 2018, 187: 291-304 [12] Wernberg T, Filbee-Dexter K. Grazers extend blue carbon transfer by slowing sinking speeds of kelp detritus. Scientific Reports, 2018, 8: 17180 [13] De Bettignies T, Wernberg T, Lavery PS, et al. Contrasting mechanisms of dislodgement and erosion contri-bute to production of kelp detritus. Limnology and Oceanography, 2013, 58: 1680-1688 [14] 夏艳芳, 章守宇, 王凯, 等. 枸杞岛海藻场两种大型海藻碎屑分解和沉降特征. 水产学报, 2023, 47(3): 77-86 [15] 杨冠林, 林军, 章守宇, 等. 基于拉格朗日法的海藻场有机碎屑离岸输运研究. 渔业科学进展, 2022, 43(5): 49-60 [16] 张健, 李训猛, 程晓鹏, 等. 天然海藻场沿岸表层沉积物有机质的分布特征与来源. 海洋科学, 2023, 47(12): 21-29 [17] Filbee-Dexter K, Wernberg T, Norderhaug KM, et al. Movement of pulsed resource subsidies from kelp forests to deep fjords. Oecologia, 2018, 187: 291-304 [18] Krumhansl K, Scheibling RE. Production and fate of kelp detritus. Marine Ecology Progress Series, 2012, 467: 281-302 [19] Bohmann, K, Evans A, Gilbert MT, et al. Environmental DNA for wildlife biology and biodiversity monitoring. Trends in Ecology & Evolution, 2014, 29: 358-367 [20] 赵小波, 刘峰, 单体锋, 等. DNA条码技术在大型海藻系统学中的研究现状. 海洋科学, 2012, 36(12): 90-94 [21] Queirós AM, Stephens N, Widdicombe S, et al. Connected macroalgal-sediment systems: Blue carbon and food webs in the deep coastal ocean. Ecological Monographs, 2019, 89: e01366 [22] Queirós AM, Tait K, Clark JR, et al. Identifying and protecting macroalgae detritus sinks toward climate change mitigation. Ecological Applications, 2022, 33: e2798 [23] 陈凯, 方成池, 吴志刚, 等. eDNA: 水生生物eDNA数据库. 水生生物学报, 2022, 46(11): 1741-1747 [24] Wei N, Nakajima F, Tobino T. Effects of treated sample weight and DNA marker length on sediment eDNA-based detection of a benthic invertebrate. Ecological Indicators, 2018, 93: 267-273 [25] Edgar RC. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 2013, 10: 996-998 [26] 项斯端, 阮积惠. 浙江底栖海藻及其区系分析. 浙江大学学报: 理学版, 2002, 47(5): 548-557 [27] 蔡丽萍, 金敬林, 吴盈子, 等. 舟山马鞍列岛海洋特别保护区岩相潮间带底栖藻类初步调查与研究. 海洋开发与管理, 2014, 31(4): 89-94 [28] 刘书荣, 周曦杰, 章守宇, 等. 贻贝筏式养殖区附生大型海藻与两种附着端足目的关系. 生态学杂志, 2018, 37(9): 2737-2744 [29] 詹冬梅, 刘玮, 辛美丽, 等. 北黄海漂浮铜藻来源的初步探讨. 海洋湖沼通报, 2022, 44(4): 123-127 [30] 章守宇, 梁君, 汪振华, 等. 浙江马鞍列岛海域潮间带底栖海藻分布特征. 应用生态学报, 2008, 19(10): 2299-2307 [31] 丁晓玮, 张建恒, 庄旻敏, 等. 我国长江口及邻近海域铜藻生长和金潮分布变化特征. 海洋渔业, 2019, 41(2): 188-196 [32] 韦莹莹, 王鹏, 刘岩, 等. 温度对不同生长时期鼠尾藻生长及光合作用的影响. 海洋湖沼通报, 2021, 43(6): 100-108 [33] Thomsen PF, Willerslev E. Environmental DNA: An emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation, 2015, 183: 4-18 [34] 包炎琳, 段元亮, 杨娜, 等. 嵊泗列岛贻贝养殖区与无人岛潮间带大型海藻群落结构比较. 海洋渔业, 2020, 42(5): 595-607 [35] 温英, 林军, 杨冠林, 等. 贻贝浮筏养殖设施水动力效应及附生海藻碎屑输运的数值模拟. 上海海洋大学学报, 2022, 31(6): 1549-1561 [36] 章守宇, 崔潇, 汪振华, 等. 枸杞岛贻贝养殖筏架附着海藻的群落结构. 水产学报, 2021, 45(5): 726-739 [37] 蔡丽萍, 金敬林, 谢挺. 舟山嵊泗无居民海岛岩相潮间带底栖动物调查与研究. 海洋开发与管理, 2016, 33(7): 64-69 [38] 周曦杰, 章守宇, 王旭, 等. 枸杞岛海藻场角蝾螺夏季摄食选择性及其生态学意义. 水产学报, 2015, 39 (4): 511-519 [39] 王旭, 赵旭, 章守宇, 等. 枸杞岛贻贝养殖水域碳氮磷分布格局. 水产学报, 2015, 39(11): 1650-1664 [40] Hill R, Bellgrove A, Macreadie PI, et al. Can macroalgae contribute to blue carbon? An Australian perspective. Limnology and Oceanography, 2015, 60: 1689-1706 [41] 吴程宏, 章守宇, 周曦杰, 等. 岛礁海藻场沉积有机物来源辨析. 水产学报, 2017, 41(8): 1246-1255 [42] Arina N, Hidayah N, Hazrin-Chong NH, et al. Algal contribution to organic carbon sequestration and its signatures in a tropical seagrass meadow. Deep Sea Research Part II-Topical Studies in Oceanography, 2023, 210: 105307 [43] Ortega A, Geraldi NR, Alam I, et al. Important contribution of macroalgae to oceanic carbon sequestration. Nature Geoscience, 2019, 12: 748-754 [44] Ortega A, Geraldi NR, Duarte CM, et al. Environmental DNA identifies marine macrophyte contributions to blue carbon sediments. Limnology and Oceanography, 2020, 65: 3139-3149 [45] Erlania, Bellgrove A, Macreadie PI, et al. Patterns and drivers of macroalgal ‘blue carbon’ transport and deposition in near-shore coastal environments. Science of the Total Environment, 2023, 890: 164430 [46] Hamaguchi M, Miyajima T, Shimabukuro H, et al. Development of quantitative real-time PCR for detecting environmental DNA derived from marine macrophytes and its application to a field survey in Hiroshima Bay, Japan. Water, 2022, 14: 827 [47] Ørberg SB, Krause-Jensen D, Geraldi NR, et al. Fingerprinting Arctic and North Atlantic macroalgae with eDNA: Application and perspectives. Environmental DNA, 2021, 4: 385-401 |