欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2025, Vol. 36 ›› Issue (3): 659-670.doi: 10.13287/j.1001-9332.202503.025

• 城市气候与城市设计专栏(专栏策划:何宝杰) • 上一篇    下一篇

基于XGBoost-SHAP可解释机器学习模型的城市形态与地表温度的关系

谭洁, 危千骏, 廖朝阳, 邝文俊, 邓慧婷, 余德*   

  1. 湖南农业大学风景园林与艺术设计学院, 长沙 410128
  • 收稿日期:2024-11-27 接受日期:2025-01-08 出版日期:2025-03-18 发布日期:2025-05-15
  • 通讯作者: * E-mail: yydydd@hunau.edu.cn
  • 作者简介:谭 洁, 女, 1979年生, 副教授。主要从事景观生态与土地利用研究。E-mail: tanjie1225@hunau.edu.cn
  • 基金资助:
    国家自然科学基金项目(42301301)和湖南省教育厅科学研究项目(22A0159,22B0191)

Relationship between urban form and surface temperature based on XGBoost SHAP interpretable machine learning model

TAN Jie, WEI Qianjun, LIAO Zhaoyang, KUANG Wenjun, DENG Huiting, YU De*   

  1. College of Landscape Architecture and Art Design, Hunan Agricultural University, Changsha 410128, China
  • Received:2024-11-27 Accepted:2025-01-08 Online:2025-03-18 Published:2025-05-15

摘要: 随着全球大城市中高层建筑的增多,探讨城市二维(2D)和三维(3D)形态对地表温度(LST)的影响,已成为缓解城市热环境和优化城市规划的关键。本研究以长沙市三环以内地区为例,基于2020年多源遥感数据提取了13项城市2D/3D特征因子,通过Pearson相关性分析探讨LST与各特征因子的线性关系,并引入XGBoost模型和SHAP方法揭示其非线性影响和贡献。结果表明: 2020年,高温区域主要分布在长沙市中心的建筑密集区,低温区域主要分布在长沙市西部和东北部的森林公园以及湘江沿岸。归一化建筑指数(NDBI)、夜间灯光(NTL)和建设用地比例(PCL)与LST呈显著正相关关系,相关系数分别为0.592、0.537和0.446,表明城市化进程加剧了地表升温;归一化植被指数(NDVI)、天空视角系数(SVF)与LST呈显著负相关关系,相关系数分别为-0.316和-0.200,体现了绿地和开阔空间对缓解城市热岛的重要作用。NDBI、NTL、NDVI和高程(DEM)对LST的影响最大,总贡献度达60.9%;这些2D/3D形态特征因子对LST的影响呈现复杂的非线性特征,其中,NDBI在0~0.2时,对LST提升最显著;NTL超过40后的增温效应趋于饱和;NDVI超过0.5时,降温效果显著增强;DEM在50~150 m对LST的降温效果最突出。本研究验证了XGBoost-SHAP模型揭示城市2D/3D特征因子对LST的非线性影响机制的有效性,并可为城市热环境治理与缓解,以及绿色、低碳、宜居的新型城镇化建设提供科学依据。

关键词: 城市2D/3D形态, 热岛效应, 可解释机器学习, XGBoost-SHAP模型

Abstract: With the increase of high-rise buildings in major cities worldwide, exploring the effects of urban two-dimensional (2D) and three-dimensional (3D) morphology on land surface temperature (LST) has become the key to mitigating the urban thermal environment and optimizing urban planning. Using the area within the Third Ring Road of Changsha as a case, we extracted 13 urban 2D/3D morphological factors based on 2020 multi-source remote sensing data. We used Pearson correlation analysis to examine the relationship between LST and each factor, and used the XGBoost model and SHAP method to reveal their nonlinear impacts and contributions. The results showed that in 2020, high-temperature regions mainly concentrated in the building-dense central area of Changsha, while low-temperature areas predominantly located in the forest parks in the western and northeastern parts of the city, as well as along the Xiangjiang River. The normalized difference building index (NDBI), nighttime lighting (NTL) and proportion of construction land (PCL) exhibited significant positive correlations with LST, with correlation coefficients of 0.592, 0.537 and 0.446, respectively, indicating that urbanization exacerbated surface warming. In contrast, the normalized difference vegetation index (NDVI) and the sky view coefficient (SVF) showed significant negative correlation with LST, with correlation coefficients of -0.316 and -0.200, respectively, reflecting the important role of green space and open space in mitigating the urban heat island effect. NDBI, NTL, NDVI, and elevation (DEM) had the greatest influence on LST, contributing 60.9% of the total variance. These 2D/3D morphological factors exhibited complex nonlinear effects on LST. NDBI had the most significant warming effect in the range from 0 to 0.2. The warming effect of NTL tended to saturate when its intensity exceeded 40. The cooling effect of NDVI became more pronounced as it surpassed 0.5. DEM values between 50 and 150 m produced the most signifi-cant cooling effect. This study validated the effectiveness of the XGBoost-SHAP model in uncovering the nonlinear mechanisms through which urban 2D/3D morphological factors influenced LST, offering scientific insights for urban heat management and the development of green, low-carbon, and livable urbanization.

Key words: urban 2D/3D form, urban heat island effect, explainable machine learning, XGBoost-SHAP model