[1] 杨颖, 郭志英, 潘恺, 等. 基于生态系统多功能性的农田土壤健康评价. 土壤学报, 2022, 59(2): 461-475 [2] 宋淑钧, 崔小茹, 陈其鲜, 等. 陇中旱区农田土壤微量元素特征及其对绿肥休耕的响应. 水土保持学报, 2023, 37(6): 268-275 [3] Ali W, Mao K, Zhang H, et al. Comprehensive review of the basic chemical behaviours, sources, processes, and endpoints of trace element contamination in paddy soil-rice systems in rice-growing countries. Journal of Hazardous Materials, 2020, 397: 122720 [4] 姚澄, 周天宇, 樊广萍, 等. 不同锌肥对土壤镉有效性及小麦镉吸收转运的影响. 农业环境科学学报, 2024, 43(1): 19-29 [5] Adler K, Piikki K, Soderstrom M, et al. Digital soil mapping of copper in Sweden: Using the prediction and uncertainty as decision support in crop micronutrient management. Geoderma Regional, 2022, 30: e00562 [6] 余存祖, 彭琳, 刘耀宏, 等. 黄土区土壤微量元素含量、分布及肥效. 土壤学报, 1991, 28(3): 317-326 [7] 魏孝荣, 郝明德, 张春霞. 长期施用微量元素肥料对土壤微量元素含量的影响. 干旱地区农业研究, 2002, 20(3): 22-25 [8] 王书转. 长期施肥条件下土壤微量元素化学特性及有效性研究. 博士论文. 北京: 中国科学院水土保持研究所, 2016 [9] Li P, Zhang HJ, Deng JJ, et al. Cover crop by irrigation and fertilization improves soil health and maize yield: Establishing a soil health index. Applied Soil Ecology, 2022, 182: 104727 [10] Liu Z, Guo Q, Feng ZY, et al. Long-term organic fertilization improves the productivity of kiwifruit (Actinidia chinensis Planch.) through increasing rhizosphere microbial diversity and network complexity. Applied Soil Eco-logy, 2020, 147: 103426 [11] Zhong YQW, Yan WM, Canisares LP, et al. Alterations in soil pH emerge as a key driver of the impact of global change on soil microbial nitrogen cycling: Evidence from a global meta-analysis. Global Ecology and Biogeography, 2023, 32: 145-165 [12] Peng ZH, Liang CL, Gao M, et al. The neglected role of micronutrients in predicting soil microbial structure. NPJ Biofilms Microbiomes, 2022, 8: 103 [13] Noman M, Ahmed T, Wang JY, et al. Micronutrient-microbiome interplay: A critical regulator of soil-plant health. Trends in Microbiology, 2024, 32: 319-320 [14] Janzen HH, Jabzen DW, Gregorich EG. The ‘soil health' metaphor: Illuminating or illusory? Soil Biology and Biochemistry, 2021, 159: 108167 [15] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2005 [16] 聂成宏, 吴文琪, 任旭东, 等. 粉末压片-X射线荧光光谱法测定硼铁中多元素. 冶金分析, 2024, 44(9): 58-65 [17] 吴金水, 林启美, 黄巧云, 等. 土壤微生物生物量测定方法及其应用. 北京: 气象出版社, 2011 [18] 李亚森, 丁松爽, 刘国顺. 农田生态系统土壤呼吸测定方法研究进展. 土壤通报, 2018, 49(3): 743-749 [19] 陈月鹏, 李石开, 安波, 等. 亚热带树种的菌根和根外菌丝对土壤氮矿化及酶活性的影响. 应用生态学报, 2023, 34(5): 1235-1243 [20] Chen R, Yin LM, Wang XH, et al. Mineral-associated organic carbon predicts the variations in microbial biomass and specific enzyme activities in a subtropical forest. Geoderma, 2023, 439: 116671 [21] Bossio DA, Scow KM, Gunapala N, et al. Determinants of soil microbial communities: Effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microbial Ecology, 1998, 36: 1-12 [22] Zhang XD, Amelung W. Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biology and Biochemistry, 1996, 28: 1201-1206 [23] Liang C, Amelung W, Lehmann J, et al. Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology, 2019, 25: 3578-3590 [24] Kuzyakov Y, Gunina A, Zamanian K, et al. New approaches for evaluation of soil health, sensitivity and resistance to degradation. Frontiers of Agricultural Science and Engineering, 2020, 7: 282-288 [25] Li X, Qiao L, Huang YP, et al. Manuring improves soil health by sustaining multifunction at relatively high levels in subtropical area. Agriculture, Ecosystems & Environment, 2023, 353: 108539 [26] Liu J, Liu BY, Liu HH, et al. Long-term cultivation drives soil carbon, nitrogen, and bacterial community changes in the black soil region of northeastern China. Land Degradation and Development, 2024, 35: 428-441 [27] Wang MM, Wu YC, Zhao JY, et al. Long-term fertilization lowers the alkaline phosphatase activity by impacting the phoD-harboring bacterial community in rice-winter wheat rotation system. Science of the Total Environment, 2022, 821: 153406 [28] 张超, 刘国彬, 薛萐, 等. 黄土丘陵区不同植被根际土壤微量元素含量特征. 应用生态学报, 2012, 23(3): 645-650 [29] Kang YL, Shen LJ, Li CF, et al. Effects of vegetation degradation on soil microbial communities and ecosystem multifunctionality in a karst region, southwest China. Journal of Environmental Management, 2024, 363: 121395 [30] Liu Y, Li Y, Pan B, et al. Application of low dosage of copper oxide and zinc oxide nanoparticles boosts bacte-rial and fungal communities in soil. Science of the Total Environment, 2021, 757: 143807 [31] Shaaban M, Peng QA, Bashir S, et al. Restoring effect of soil acidity and Cu on N2O emissions from an acidic soil. Journal of Environmental Management, 2019, 250: 109535 [32] Jośko I, Oleszczuk P, Dobzyńska J, et al. Long-term effect of ZnO and CuO nanoparticles on soil microbial community in different types of soil. Geoderma, 2019, 352: 204-212 [33] Osburn ED, Hoch PJ, Prather CM, et al. Effects of micronutrient fertilization on soil carbon pools and micro-bial community functioning. Applied Soil Ecology, 2023, 181: 104664 [34] Zhou JZ, Ning DL. Stochastic community assembly: Does it matter in microbial ecology? Microbiology and Molecular Biology Reviews, 2017, 81: e00002-17 [35] 李芙蓉, 尹娇阳, 于波, 等. 铜胁迫对苹果幼苗根际土壤养分、酶活性及微生物的影响. 北方园艺, 2023(19): 71-77 [36] 万红云, 陈林, 庞丹波, 等. 贺兰山不同海拔土壤酶活性及其化学计量特征. 应用生态学报, 2021, 32(9): 3045-3052 [37] Li JB, Xie T, Zhu H, et al. Alkaline phosphatase acti-vity mediates soil organic phosphorus mineralization in a subalpine forest ecosystem. Geoderma, 2021, 404: 115376 [38] Li ZL, Qiu LX, Zhang TJ, et al. Long-term application of controlled-release potassium chloride increases maize yield by affecting soil bacterial ecology, enzymatic acti-vity and nutrient supply. Field Crops Research, 2023, 297: 108946 [39] Yu PJ, Han DL, Liu SW, et al. Soil quality assessment under different land uses in an alpine grassland. Catena, 2018, 171: 280-287 [40] Monzon JP, Li LimY, Tenorio FA, et al. Agronomy explains large yield gaps in smallholder oil palm fields. Agricultural Systems, 2023, 210: 103689 |