[1] 沈永平, 王国亚. IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点. 冰川冻土, 2013, 35(5): 1068-1076 [2] Bonan GB. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 2008, 320: 1444-1449 [3] 何韵冰. “双碳”背景下湘西州林业碳汇发展潜力、困难与对策. 南方农业, 2024, 18(16): 42-44 [4] Wang C, Song X, Luo D, et al. Landscape changes and livelihood outcomes in rural tea farming communities: A case study in Fuding City, Fujian Province, Southeast China. PLoS One, 2023, 18(12): e0295620 [5] Beer C, Reichstein M, Tomelleri E, et al. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science, 2010, 329: 834-838 [6] Pang J, Li H, Tang X, et al. Carbon dynamics and environmental controls of a hilly tea plantation in Southeast China. Ecology and Evolution, 2019, 9: 9723-9735 [7] Zhang J, Wang X, Ren J. Simulation of gross primary productivity using multiple light use efficiency models. Land, 2021, 10: 329 [8] Zhang J, Xiao J, Tong X, et al. NIRv and SIF better estimate phenology than NDVI and EVI: Effects of spring and autumn phenology on ecosystem production of planted forests. Agricultural and Forest Meteorology, 2022, 315: 108819 [9] Nkrumah T, Meiling Z, Stephen N, et al. Response of carbon budget to climate change of the alpine meadow in Gannan using the CENTURY model. Journal of Water and Climate Change, 2022, 13: 2298-2318 [10] Sánchez-Ruiz S, Maselli F, Chiesi M, et al. Remote sensing and bio-geochemical modeling of forest carbon storage in Spain. Remote Sensing, 2020, 12: 1356 [11] Wu C, Munger JW, Niu Z, et al. Comparison of multiple models for estimating gross primary production using MODIS and eddy covariance data in Harvard Forest. Remote Sensing of Environment, 2010, 114: 2925-2939 [12] 黄璐瑶, 杜珊凤, 纪小芳, 等. 基于Biome-BGC模型的浙江凤阳山针阔混交林碳动态模拟. 南京林业大学学报: 自然科学版, 2024, 48(5): 11-20 [13] 张晨凤, 贺丽, 董廷发, 等. 基于Biome-BGC模型的若尔盖不同沙地类型土壤水分植被承载力对气候变化的响应. 生态学杂志, 2024, 43(6): 1833-1840 [14] 张盈盈, 刘旻霞, 潘竟虎, 等. 甘南高寒草甸碳收支时空格局及动态模拟. 生态学报, 2024, 44(13): 5542-5553 [15] 樊华烨, 李英, 张廷龙, 等. 陆地植被水碳通量模型模拟与数据同化研究进展. 应用生态学报, 2020, 31(6): 2098-2108 [16] Huang B, Yang Y, Li R, et al. Integrating remotely sensed leaf area index with biome-BGC to quantify the impact of land use/land cover change on water retention in Beijing. Remote Sensing, 2022, 14: 743 [17] Geng J, Li H, Pang J, et al. Dynamics and environmental controls of energy exchange and evapotranspiration in a hilly tea plantation, China. Agricultural Water Management, 2020, 241: 106364 [18] 孙燕瓷, 马友鑫, 曹坤芳, 等. 基于Biome-BGC模型的西双版纳橡胶林碳收支模拟. 生态学报, 2017, 37(17): 5732-5741 [19] 贾彦龙, 王秋凤, 朱剑兴, 等. 1996—2015年中国大气无机氮湿沉降时空格局数据集. 中国科学数据, 2019, 4(1): 8-17 [20] 贾彦龙, 王秋凤, 朱剑兴, 等. 2006—2015年中国大气无机氮干沉降时空格局数据集. 中国科学数据, 2021, 6(2): 213-221 [21] Glassy JM, Running SW. Validating diurnal climatology logic of the MTCLIM model across a climatic gradient in Oregon. Ecological Applications, 1994, 4: 248-257 [22] Yan K, Wang J, Peng R, et al. HiQ-LAI: A high-qua-lity reprocessed MODIS leaf area index dataset with better spatiotemporal consistency from 2000 to 2022. Earth System Science Data, 2024, 16: 1601-1622 [23] Wilczak JM, Oncley SP, Stage SA. Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorology, 2001, 99: 127-150 [24] Webb EK, Pearman GI, Leuning R. Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society, 1980, 106: 85-100 [25] Yu GR, Wen XF, Sun XM, et al. Overview of China FLUX and evaluation of its eddy covariance measurement. Agricultural and Forest Meteorology, 2006, 137: 125-137 [26] Reichstein M, Falge E, Baldocchi D, et al. On the sepa-ration of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Global Change Biology, 2005, 11: 1424-1439 [27] Falge E, Baldocchi D, Olson R, et al. Gap filling stra-tegies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology, 2001, 107: 43-69 [28] 徐崇刚, 胡远满, 常禹, 等. 生态模型的灵敏度分析. 应用生态学报, 2004, 15(6): 1056-1062 [29] White MA, Thornton PE, Running SW, et al. Parameterization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: Net primary production controls. Earth Interactions, 2000, 4: 1-85 [30] Watson TA, Doherty JE, Christensen S. Parameter and predictive outcomes of model simplification. Water Resources Research, 2013, 49: 3952-3977 [31] 贾畅, 王丽娜, 唐亚坤. 利用Biome-BGC模型模拟黄土区沙棘人工林碳通量时的生理生态参数敏感性. 林业科学, 2022, 58(11): 49-60 [32] 李一哲, 张廷龙, 刘秋雨, 等. 生态过程模型敏感参数最优取值的时空异质性分析: 以BIOME-BGC模型为例. 应用生态学报, 2018, 29(1): 84-92 [33] Zheng Y, Zhang L, Li P, et al. Evaluation of the community land model-simulated specific leaf area with observations over China: Impacts on modeled gross primary productivity. Forests, 2023, 14: 164 [34] 何丽鸿, 王海燕, 雷相东. 基于BIOME-BGC模型的长白落叶松林净初级生产力模拟参数敏感性. 应用生态学报, 2016, 27(2): 412-420 [35] Carlyle-Moses DE, Gash JH. Rainfall interception loss by forest canopies// Levia DF, Carlyle-Moses D, Tanaka T, eds. Forest Hydrology and Biogeochemistry: Synthesis of Past Research and Future Directions. Berlin: Springer, 2011: 407-423 [36] Hidy D, Barcza Z, Hollós R, et al. Soil-related deve-lopments of the Biome-BGCMuSo v6. 2 terrestrial ecosystem model. Geoscientific Model Development, 2022, 15: 2157-2181 [37] Badger MR, Sharwood RE. Rubisco, the imperfect winner: It’s all about the base. Journal of Experimental Botany, 2023, 74: 562-580 [38] Bond-Lamberty B, Gower ST, Ahl DE, et al. Reimplementation of the Biome-BGC model to simulate successional change. Tree Physiology, 2005, 25: 413-424 [39] Asaadi A, Arora VK, Melton JR, et al. An improved parameterization of leaf area index (LAI) seasonality in the Canadian Land Surface Scheme (CLASS) and Canadian Terrestrial Ecosystem Model (CTEM) modelling framework. Biogeosciences, 2018, 15: 6885-6907 [40] 张廷龙, 孙睿, 张荣华, 等. 基于数据同化的哈佛森林地区水、碳通量模拟. 应用生态学报, 2013, 24(10): 2746-2754 [41] 李新, 马瀚青, 冉有华, 等. 陆地碳循环模型-数据融合: 前沿与挑战. 中国科学: 地球科学, 2021, 51(10): 1650-1663 [42] 袁洪艺, 杜灵通, 潘海珠, 等. 基于参数优化的人工灌丛生态系统碳水通量模拟. 生态学报, 2023, 43(13): 5546-5557 [43] Zaehle S, Sitch S, Smith B, et al. Effects of parameter uncertainties on the modeling of terrestrial biosphere dynamics. Global Biogeochemical Cycles, 2005, 19, DOI: 10.1029/2004GB002395 [44] 彭俊杰, 何兴元, 陈振举, 等. 华北地区油松林生态系统对气候变化和CO2浓度升高的响应: 基于BIOME-BGC模型和树木年轮的模拟. 应用生态学报, 2012, 23(7): 1733-1742 [45] Gromova M, Matvienko A, Makarove M, et al. Tempera-ture sensitivity (Q10) of soil basal respiration as a function of available carbon substrate, temperature, and moisture. Eurasian Soil Science, 2020, 53: 377-382 [46] Chiesi M, Chirici G, Marchetti M, et al. Testing the applicability of BIOME-BGC to simulate beech gross primary production in Europe using a new continental weather dataset. Annals of Forest Science, 2016, 73: 713-727 [47] 刘秋雨, 张廷龙, 孙睿, 等. Biome-BGC模型参数的敏感性和时间异质性. 生态学杂志, 2017, 36(3): 869-877 |