[1] 赵扬辉, 汤亮, 曹卫星, 等. 小麦生长模拟模型(WheatGrow)的适应性评价. 麦类作物学报, 2010, 30(3): 443-448 [2] 刘铁梅, 曹卫星, 罗卫红. 小麦抽穗后生理发育时间的计算与生育期的预测. 麦类作物学报, 2000, 20(3): 29-34 [3] Cao WX, Moss DN. Modelling phasic development in wheat: A conceptual intergration of physiological components. The Journal of Agricultural Science, 1997, 129: 163-172 [4] Zhang XH, Xu H, Jiang L, et al. Selection of approp-riate spatial resolution for the meteorological data for regional winter wheat potential productivity simulation in China based on WheatGrow model. Agronomy, 2018, 8: 198 [5] 严美春, 曹卫星, 罗卫红, 等. 小麦茎顶端原基发育模拟模型的研究. 作物学报, 2001, 27(3): 356-362 [6] 杨月, 刘兵, 刘小军, 等. 小麦生育期模拟模型的比较. 南京农业大学学报, 2014, 37(1): 6-14 [7] 刘涛, 万能涵, 张镇涛, 等. DSSAT模型对吉林省梨树县部分主要作物的适用性. 生态学杂志, 2023, 42(5): 1264-1272 [8] 花登峰, 刘小军, 汤亮, 等. 基于构件化生长模型的作物管理决策支持系统. 南京农业大学学报, 2008, 31(1): 17-22 [9] 姜海燕, 尹言, 彭川阳, 等. 作物生长模型分布式并行调度方案的比较. 农业工程学报, 2011, 27(5): 237-242 [10] 徐浩. 基于生长模型与GIS耦合的小麦区域光温生产潜力模拟研究. 博士论文. 南京: 南京农业大学, 2020 [11] 顾卫, 史培军, 刘杨, 等. 渤海和黄海北部地区负积温资源的时空分布特征. 自然资源学报, 2002, 17(2): 168-173 [12] 张厚瑄, 张翼. 中国活动积温对气候变暖的响应. 地理学报, 1994, 49(1): 27-36 [13] 谢云, Kiniry JR. 国外作物生长模型发展综述. 作物学报, 2002, 28(2): 190-195 [14] Monsi M, Saeki T. On the factor light in plant communities and its importance for matter production. Japanese Journal of Botany, 1953, 14: 22-52 [15] de Wit C. Photosynthesis of Leaf Canopies. Waganingen, the Netherlands: Centre for Agricultural Publications and Documentation, 1965: 1-54 [16] de Wit CT, Brouwer R, de Vries FP. The simulation of photosynthetic system. Proceedings of the IBP/PP Technical Meeting, Trebon, Czech, 1969: 47-70 [17] Curry RB. Dynamic simulation of plant growth. Part Ⅰ. Development of a model. Transactions of the American Society of Agricultural and Biological Engineers, 1971, 14: 946-949 [18] Curry RB, Chen LH. Dynamic simulation of plant growth. Part Ⅱ. Incorporation of actual daily weather and partitioning of net photosynthate. Transactions of the American Society of Agricultural and Biological Engineers, 1971, 14: 1170-1174 [19] Hesketh JD, Baker DN, Duncan WG. Simulation of growth and yield in cotton: Respiration and the carbon balance. Crop Science, 1971, 11: 394-398 [20] de Vries FP, Laar HH. Simulation of growth processes and the model BACROS// Penning de Vries FP, Laar HH, eds. Simulation of Plant Growth and Crop Production. Wageningen, the Netherlands: Waganingen University & Research, 1982: 114-135 [21] Hodges T, Botner D, Sakamoto C, et al. CERES-Maize model to estimate production for the US corn belt. Agricultural and Forest Meteorology, 1987, 40: 293-303 [22] Dente L, Satalino G, Mattia F, et al. Assimilation of leaf area index derived from ASAR and MERIS data into CERES-Wheat model to map wheat. Remote Sensing of Environment, 2008, 112: 1395-1407 [23] Quemada M, Cabrera ML. Ceres-N model prediction of nitrogen mineralized from cover crop residues. Soil Science Society of America Journal, 1995, 59: 1059-1065 [24] Mamo G, mequanint F. Calibration and validation of CERES model sensitivity to assess impacts of climate change on wheat production// Degefie DT, Mamo G, Welidehanna FG, eds. Results of Climate, Geospatial, and Biometrics Research. Addis Ababa, Ethiopia: Ethio-pian Institute of Agricultural Research, 2019: 39 [25] de Wit A, Boogaard H, Fumagalli D, et al. 25 years of WOFOST cropping systems model. Agricultural Systems, 2019, 168: 154-167 [26] Steduto P, Hsiao TC, Raes D, et al. AquaCrop-The FAO crop model to simulate yield response to water. Ⅰ. Concepts and underlying principles. Agronomy Journal, 2009, 101: 426-437 [27] Raes D, Steduto P, Hsiao TC, et al. AquaCrop-the FAO crop model to simulate yield response to water. Ⅱ. Main algorithms and software description. Agronomy Journal, 2009, 101: 438-447 [28] Boogaard HL, van Diepen CA, Rotter RP, et al. WOFOST 7.1; user’s guide for the WOFOST 7.1 crop growth simulation model and WOFOST Control Center 1.5. Wageningen, the Netherlands: Waganingen University & Research, 2014 [29] Rosenzweig C, Jones JW, Hatfield JL, et al. The agricultural model intercomparison and improvement project (AgMIP): Protocols and pilot studies. Agricultural and Forest Meteorology, 2013, 170: 166-182 [30] 韩健, 池宝亮. 作物生长模型发展现状及应用前景. 山西农业科学, 2011, 39(8): 900-903 [31] 高亮之, 金之庆. RCSODS: 水稻栽培计算机模拟优化决策系统. 计算机农业应用, 1993(3): 14-20 [32] 冯利平, 高亮之, 金之庆, 等. 小麦发育期动态模拟模型的研究. 作物学报, 1997, 23(4): 418-424 [33] 戚昌瀚. 水稻生长日历模拟模型研究综合报告. 江西农业大学学报, 1992, 14(3): 218-223 [34] 戚昌瀚, 谢大海, 殷新佑, 等. 水稻生长日历模拟模型(RICAM)的调控决策系统(RICOS)研究. 江西农业大学学报, 1994, 16(4): 323-327 [35] 潘学标, 韩湘玲, 石元春. COTGROW: 棉花生长发育模型. 棉花学报, 1996, 8(4): 180-188 [36] 潘学标, 韩湘玲, 王延琴, 等. 棉花生长发育模拟模型COTGROW的建立. Ⅱ. 发育与形态发生. 棉花学报, 1999, 11(4): 3-5 [37] 潘学标, 韩湘玲, 董占山, 等. 棉花生长发育模拟模型COTGROW的建立. Ⅰ. 光合作用和干物质生产与分配. 棉花学报, 1997, 9(3): 21-30 [38] 曹卫星, 罗卫红. 作物系统模拟及智能管理. 北京: 华文出版社, 2001 [39] 荆奇, 曹卫星, 戴延波. 小麦籽粒品质形成及其调控研究进展. 麦类作物学报, 1999, 19(4): 3-5 [40] 曹卫星, 李存东, 李旭, 等. 基于作物模型的专家系统预测和决策功能的结合. 计算机与农业, 1998(2): 8-10 [41] 曹永华. 农业决策支持系统研究综述. 中国农业气象, 1997, 18(4): 37-40 [42] 李存东, 曹卫星, 李旭, 等. 论作物信息技术及其发展战略. 农业现代化研究, 1998, 19(1): 3-5 [43] 曹卫星. 作物智能栽培学: 信息科学与作物栽培学的结合. 科技导报, 2000, 18(1): 37-40 [44] 李旭, 曹卫星, 罗卫红. 小麦管理智能决策系统的设计与实现. 南京农业大学学报, 1999, 22(3): 9-12 [45] 高亮之, 金之庆, 郑国清, 等. 小麦栽培模拟优化决策系统(WCSODS). 江苏农业学报, 2000, 16(2): 65-72 [46] Lv ZF, Liu XJ, Cao WX, et al. Climate change impacts on regional winter wheat production in main wheat production regions of China. Agricultural and Forest Meteo-rology, 2013, 171: 234-248 [47] 石晓燕, 汤亮, 刘小军, 等. 基于模型和GIS的小麦空间生产力预测研究. 中国农业科学, 2009, 42(11): 3828-3835 [48] Balwinder-Singh, Gaydon DS, Humphreys E, et al. The effects of mulch and irrigation management on wheat in Punjab, India: Evaluation of the APSIM model. Field Crops Research, 2011, 124: 1-13 [49] Arora VK, Singh H, Singh B. Analyzing wheat productivity responses to climatic, irrigation and fertilizer-nitrogen regimes in a semi-arid sub-tropical environment using the CERES-wheat model. Agricultural Water Mana-gement, 2007, 94: 22-30 [50] Abeledo LG, Savin R, Slafer GA. Wheat productivity in the Mediterranean Ebro Valley: Analyzing the gap between attainable and potential yield with a simulation model. European Journal of Agronomy, 2008, 28: 541-550 [51] Cao WX, Liu T, Luo WH, et al. Simulating organ growth in wheat based on the organ-weight fraction concept. Plant Production Sciences, 2002, 5: 248-256 [52] Tang L, Zhu Y, Hannaway D, et al. RiceGrow: A rice growth and productivity model. NJAS-Wageningen Journal of Life Sciences, 2009, 57: 83-92 [53] Wang H, Zhu Y, Li WL, et al. Integrating remotely sensed leaf area index and leaf nitrogen accumulation with RiceGrow model based on particle swarm optimization algorithm for rice grain yield assessment. Journal of Applied Remote Sensing, 2014, 8: 083674 [54] He JQ, Dukes MD, Hochmuth JT, et al. Identifying irrigation and nitrogen best management practices for sweet corn production on sandy soils using CERES-Maize model. Agricultural Water Management, 2012, 109: 61-70 [55] Bethenod O, Ruget F, Nader K, et al. Impact of atmospheric CO2 concentration on water use efficiency of maize. Maydica, 2001, 46: 75-80 [56] Maiorano A, Martre P, Asseng S, et al. Crop model improvement reduces the uncertainty of the response to temperature of multi-model ensembles. Field Crops Research, 2017, 202: 5-20 [57] Bhattarai S, Alvarez S, Gary C, et al. Combining farm typology and yield gap analysis to identify major variables limiting yield in the highland coffee systems of Llano Bonito, Costa Rice. Agriculture, Ecosystems & Environment, 2017, 243: 132-142 [58] Stack DH, Kafatos M. ApsimRegions: A gridded mode-ling framework for the APSIM crop model[EB/OL]. (2013-03) [2024-10-27]. https://www.researchgate.net/publication/235980285_ApsimRegions_A_Gridded_Modeling_Framework_for_the_APSIM_Crop_Model [59] Myoung B, Kim SH, Stack DH, et al. Temperature, sowing and harvest dates, and yield potential of maize in the Southwestern US. Procedia Environmental Sciences, 2015, 29: 276 [60] McNider RT, Christy JR, Moss D, et al. A real-time gridded crop model for assessing spatial drought stress on crops in the United States. Journal of Applied Meteo-rology and Climatology, 2011, 50: 1459-1475 [61] Izaurralde RC, Williams JR, McGill WB, et al. Simulating soil C dynamics with EPIC: Model description and testing against long-term data. Ecological Modelling, 2006, 192: 362-384 [62] Sharpley A, Williams JR. EPIC-erosion/productivity impact calculator. 1. Model documentation. Washington DC, USA: US Department of Agriculture, 1990 [63] Liu JG, Williams JR, Zehnder AJB, et al. GEPIC-modelling wheat yield and crop water productivity with high resolution on a global scale. Agricultural Systems, 2007, 94: 478-493 [64] Leemans R, Solomon AM. modeling the potential change on yield and distribution of the earth’s crops under a warmed climate. Climate Research, 1993, 3: 79-96 [65] Elliott J, Kelly D, Chryssanthacopoulos J, et al. The parallel system for integrating impact models and sectors (pSIMS). Environmental Modelling & Software, 2014, 62: 509-516 [66] Jones JW, Hoogenboom G, Porter CH, et al. The DSSAT cropping system model. European Journal of Agro-nomy, 2003, 18: 235-265 [67] 王亚莉, 贺立源. 作物生长模拟模型研究和应用综述. 华中农业大学学报, 2005, 24(5): 107-113 [68] Hammer G, Cooper M, Tardieu F, et al. Models for navigating biological complexity in breeding improved crop plants. Trends in Plant Science, 2006, 11: 587-593 [69] White MA, Thornton PE, Running SW. A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochemical Cycles, 1997, 11: 217-234 [70] Ritchie JT, Singh U, Godwin DC, et al. Cereal growth, development and yield// de Vries FP, Teng PS, eds. Systems Approaches for Sustainable Agricultural Deve-lopment. Berlin, Germany: Springer, 1998: 79-98 [71] Ritchie JT. Model for predicting evaporation from a row crop with incomplete cover. Water Resources Research, 1972, 8: 1204-1213 [72] Donatelli M, Magarey RD, Bregaglio S, et al. Modelling the impacts of pests and diseases on agricultural systems. Agricultural Systems, 2017, 155: 213-224 [73] Dorigo WA, Zurita-Milla R, de Wit A, et al. A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling. International Journal of Applied Earth Observation and Geoinformation, 2007, 9: 165-193 [74] Ittersum M, Leffelaar PA, Keulen HV, et al. On approaches and applications of the Wageningen crop models. European Journal of Agronomy, 2003, 18: 201-234 [75] Keating BA, Carberry PS, Hammer GL, et al. An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 2003, 18: 267-288 [76] Brisson N, Gary C, Justes E, et al. An overview of the crop model STICS. European Journal of Agronomy, 2003, 18: 309-332 [77] 周彤, 刘涛, 武威, 等. 几种常见作物模型的研究进展及其参数优化. 上海农业学报, 2017, 33(4): 152-159 [78] van Keulen H, de Vries FP, Drees EM. A summary model for crop growth// de Vries FP, Laar HH, eds. Simulation of Plant Growth & Crop Production. Wageningen, the Netherlands: Wageningen University and Research, 1982: 87-97 [79] Van Diepen CA, Wolf J, van Keulen H, et al. WOFOST: A simulation model of crop production. Soil Use and Management, 1989, 5: 16-24 [80] Ezui KS, Leffelaar PA, Franke AC, et al. Simulating drought impact and mitigation in cassava using the LINTUL model. Field Crops Research, 2018, 219: 256-272 [81] Kroes JG, Wesseling JC, van Dam JC. Integrated mode-lling of the soil-water-atmosphere-plant system using the model SWAP 2.0: An overview of theory and an application. Hydrological Processes, 2000, 14: 1993-2002 [82] Bouman BAM, Kropff MJ, Wopereis MCS, eds. ORYZA2000: Modeling Lowland Rice. Los Baños, Metro Manila, Philippines: International Rice Research Institute, 2001 [83] Hoogenboom G, Jones J, Wilkens P, et al. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.5. Honolulu, Hawaii, USA: University of Hawaii, 2010 [84] 高亮之. 水稻栽培计算机模拟优化决策系统. 北京: 中国农业科技出版社, 1992 [85] 朱艳, 汤亮, 刘蕾蕾, 等. 作物生长模型(CropGrow)研究进展. 中国农业科学, 2020, 53(16): 3235-3256 [86] 潘学标, 龙腾芳, 董占山, 等. 棉花生长发育与产量形成模拟模型(CGSM)研究. 棉花学报, 1992, 4(增刊): 11-20 [87] 马玉平, 霍治国, 王培娟, 等. 中国农业气象模式(CAMM1.0)构建与应用. 应用气象学报, 2019, 30(5): 528-542 [88] 冯利平, 孙宁, 刘荣花, 等. 我国华北冬小麦生产影响评估模型的研究. 中国生态农业学报, 2003, 11(4): 73-76 [89] Basso B, Liu L, Ritchie JT. A comprehensive review of the CERES-wheat, -maize and -rice models’ perfor-mances. Advances in Agronomy, 2016, 136: 27-132 [90] Jones JW, Antle JM, Basso B, et al. Brief history of agricultural systems modeling. Agricultural Systems, 2017, 155: 240-254 [91] Kadiyala M, Nedumaran S, Singh P, et al. An integra-ted crop model and GIS decision support system for assisting agronomic decision making under climate change. Science of the Total Environment, 2015, 521: 123-134 [92] Rader M, Kirshen P, Roncoli C, et al. Agricultural risk decision support system for resource-poor farmers in Burkina Faso, West Africa. Journal of Water Resources Planning and Management, 2009, 135: 323-333 [93] Goudriaan J. Crop Micrometeorology: A Simulation Study. PhD Thesis. Wageningen, the Netherlands: Wageningen University and Research, 1977 [94] Hume C, Callander B. Agrometeorology and model building. Outlook on Agriculture, 1990, 19: 25-30 [95] 殷新佑, 戚昌瀚. 水稻生长日历模拟模型及其应用研究. 作物学报, 1994, 20(3): 339-346 [96] Gutierrez AP, Leigh TF, Wang Y, et al. Analysis of cotton production in California: Lygus hesperus (Heteroptera: Miridae) injury: An evaluation. Canadian Entomologist, 1977, 109: 1375-1386 [97] 郑国清, 张瑞玲, 高亮之. 我国玉米计算机模拟模型研究进展. 玉米科学, 2003, 11(2): 66-70 [98] Liu X, Yang DW. Irrigation schedule analysis and optimization under the different combination of P and ET0 using a spatially distributed crop model. Agricultural Water Management, 2021, 256: 107084 [99] Shen HZ, Xu FP, Zhao RH, et al. Optimization of sowing date, irrigation, and nitrogen management of summer maize using the DSSAT-CERES-Maize Model in the Guanzhong Plain, China. Transactions of the American Society of Agricultural and Biological Engineers, 2020, 63: 789-797 [100] Kipkulei HK, Bellingrath-Kimura SD, Lana M, et al. Assessment of maize yield response to agricultural mana-gement strategies using the DSSAT-CERES-Maize model in Trans Nzoia County in Kenya. International Journal of Plant Production, 2022, 16: 557-577 [101] Khan GR, Alkharabsheh HM, Akmal M, et al. Split nitrogen application rates for wheat (Triticum aestivum L.) yield and grain N using the CSM-CERES-Wheat model. Agronomy, 2022, 12: 1766 [102] Ko J, Piccinni G, Steglich E. Using EPIC model to manage irrigated cotton and maize. Agricultural Water Management, 2009, 96: 1323-1331 [103] Shelia V, Hansen J, Sharda V, et al. A multi-scale and multi-model gridded framework for forecasting crop production, risk analysis, and climate change impact studies. Environmental Modelling & Software, 2019, 115: 144-154 [104] Kim JS, Kisekka I. FARMs: A geospatial crop mode-ling and agricultural water management system. ISPRS International Journal of Geo-Information, 2021, 10: 553 [105] 蒙继华, 王亚楠, 林圳鑫, 等. 作物生长模型研究现状与展望. 农业机械学报, 2024, 55(2): 1-16 [106] 邱建军, 肖荧南, 辛德惠, 等. 作物生长模拟模型参数校正与有效化的理论和实践. 应用生态学报, 1999, 10(6): 679-682 [107] 陈宏金. 作物生长模拟模型研究进展综述. 农业装备技术, 2006, 32(6): 26-28 [108] 张黎, 王石立, 马玉平. 遥感信息应用于区域尺度水分限制条件下作物生长模拟的研究进展. 应用生态学报, 2005, 16(6): 1156-1162 [109] 付志伟, 赵犇, 马鑫钰, 等. 烟草生长发育模拟模型研究进展. 绿色科技, 2014, 26(17): 62-69 |