应用生态学报 ›› 2025, Vol. 36 ›› Issue (5): 1540-1552.doi: 10.13287/j.1001-9332.202505.031
孔垂华1, 王朋2*
收稿日期:
2024-11-15
修回日期:
2025-03-05
出版日期:
2025-05-18
发布日期:
2025-11-18
通讯作者:
*E-mail: wangpeng@iae.ac.cn
作者简介:
孔垂华, 男, 1962年生, 教授。主要从事植物化学生态学研究。
基金资助:
KONG Chuihua1, WANG Peng2*
Received:
2024-11-15
Revised:
2025-03-05
Online:
2025-05-18
Published:
2025-11-18
摘要: 植物化感作用和植物化学识别通讯均是植物对与其共存的同种或异种植物的化学响应策略,这样的植物种间和种内的化学作用积极地影响植物个体生存繁殖、种群和群落动态以及生态系统生产力。植物化感作用和植物化学识别通讯分别是由植物产生释放的化感物质和信号物质所介导,而信号物质介导的植物化学识别通讯可以启动相应的植物化感作用。近年还发现,植物种内亲属间也存在着化学识别,而亲缘识别导致的种内合作可以协调根系行为和开花繁殖以及种间化感作用。虽然植物化感作用和植物化学识别通讯研究不断取得重要进展,但它们在植物个体、种群、群落水平的时空动态以及在生态系统中的作用远比想象的复杂而重要,也蕴藏着许多值得探索的科学问题。鉴于此,本文从植物竞争与植物化感作用和亲缘识别、植物化感作用与植物邻居身份识别响应、植物间的正负相互作用及其利用策略、根系信号物质介导的植物地下和地上互作、化感物质和信号物质及其动态捕获鉴定等5个方面阐述植物化感作用和植物化学识别通讯研究中的一些问题和思考,以期推动同行从新的角度审视植物种间和种内的化学互作关系及其对植物群落和生态系统的作用。
孔垂华, 王朋. 植物化感作用和植物化学识别通讯: 问题与思考[J]. 应用生态学报, 2025, 36(5): 1540-1552.
KONG Chuihua, WANG Peng. Allelopathy and chemical communication among plants: Questions and reflections[J]. Chinese Journal of Applied Ecology, 2025, 36(5): 1540-1552.
[1] Sutherland WJ, Freckleton RP, Godfray HCJ, et al. Identification of 100 fundamental ecological questions. Journal of Ecology, 2013, 101: 58-67 [2] 孔垂华. 植物种间和种内的化学作用. 应用生态学报, 2020, 31(7): 2141-2150 [3] Hierro JL, Callaway, et al. The ecological importance of allelopathy. Annual Review of Ecology, Evolution and Systematics, 2021, 52: 25-45 [4] Karban R. Plant communication. Annual Review of Ecology, Evolution and Systematics, 2021, 52: 1-24 [5] Kong CH, Li Z, Li FL, et al. Chemically mediated plant-plant interactions: Allelopathy and allelobiosis. Plants, 2024, 13: 626 [6] 孔垂华, 胡飞, 王朋. 植物化感(相生相克)作用. 北京: 高等教育出版, 2016 [7] Wang NQ, Kong CH, Wang P, et al. Root exudate signals in plant-plant interactions. Plant, Cell & Environment, 2021, 44: 1044-1058 [8] Ninkovic V, Markovic D, Rensing M. Plant volatiles as cues and signals in plant communication. Plant, Cell & Environment, 2021, 44: 1030-1043 [9] Loreto F, D’Auria S. How do plants sense volatiles sent by other plants? Trends in Plant Science, 2022, 27: 29-38 [10] Brosset A, Blande JD. Volatile-mediated plant-plant interactions: Volatile organic compounds as modulators of receiver plant defence, growth, and reproduction. Journal of Experimental Botany, 2022, 73: 511-528 [11] Yoneyama K, Bennett T. Whispers in the dark: Signals regulating underground plant-plant interactions. Current Opinion in Plant Biology, 2024, 77: 102456 [12] Tilman D. Resource competition and community structure. Princeton, NJ, USA: Princeton University Press, 1982 [13] Simonsen AK, Chow, et al. Reduced plant competition among kin can be explained by Jensen’s inequality. Ecology and Evolution, 2014, 4: 4454-4466 [14] Teste FP, Kardol P, Turner BL, et al. Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands. Science, 2017, 355: 173-176 [15] Bennett JA, Klironomos J. Mechanisms of plant-soil feedback: Interactions among biotic and abiotic drivers. New Phytologist, 2019, 222: 91-96 [16] Kuzyakov Y, Xu XL. Competition between roots and microorganisms for nitrogen: Mechanisms and ecological relevance. New Phytologist, 2013, 198: 656-669 [17] Xu Y, Cheng HF, Kong CH, et al. Intra-specific kin recognition contributes to inter-specific allelopathy: A case study of allelopathic rice interference with paddy weeds. Plant, Cell & Environment, 2021, 44: 3709-3721 [18] Kong CH, Zhang SZ, Li YH, et al. Plant neighbor detection and allelochemical response are driven by root-secreted signaling chemicals. Nature Communications, 2018, 9: 3867 [19] Zhang SZ, Li YH, Kong CH, et al. Interference of alle-lopathic wheat with different weeds. Pest Management Science, 2016, 72: 172-178 [20] Yang LX, Wang P, Kong CH. Effect of larch (Larix gmelinii Rupr.) root exudates on Manchurian walnut (Juglans mandshurica Maxim.) growth and soil juglone in a mixed-species plantation. Plant and Soil, 2010, 329: 249-258 [21] Li B, Li YY, Wu HM, et al. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113: 6496-6501 [22] Yang XF, Kong CH. Interference of allelopathic rice with paddy weeds at the root level. Plant Biology, 2017, 19: 584-591 [23] Semchenko M, Saar S, Lepik A. Plant root exudates mediate neighbour recognition and trigger complex behavioural changes. New Phytologist, 2014, 204: 631-637 [24] Calvo P. Planta Sapiens: Unmasking Plant Intelligence. New York: Little, Brown and Company, 2023 [25] 阚金红, 方荣祥, 贾燕涛. 植物与微生物之间的跨界信号调控. 中国科学: 生命科学, 2017, 47: 903-916 [26] Bardon C, Piola F, Bellvert F, et al. Evidence for biological denitrification inhibition (BDI) by plant secon-dary metabolites. New Phytologist, 2014, 204: 620-630 [27] Galland W, Piola F, Burlet A, et al. Biological denitrification inhibition (BDI) in the field: A strategy to improve plant nutrition and growth. Soil Biology & Biochemistry, 2019, 136: 107513 [28] Sandford S. Vegetal Sex: Philosophy of Plants. London: Bloomsbury Publishing, 2022 [29] Semchenko M, John EA, Hutchings MJ. Effects of phy-sical connection and genetic identity of neighbouring ramets on root-placement patterns in two clonal species. New Phytologist, 2007, 176: 644-654 [30] Wuest SE, Peter R, Niklaus PA. Ecological and evolutionary approaches to improving crop variety mixtures. Nature Ecology & Evolution, 2021, 5: 1068-1077 [31] Xia ZC, Kong CH, Chen LC, et al. A broadleaf species enhances an autotoxic conifers growth through belowground chemical interactions. Ecology, 2016, 97: 2283-2292 [32] Reiss ER, Drinkwater LE. Cultivar mixtures: A meta-analysis of the effect of intraspecific diversity on crop yield. Ecological Applications, 2018, 28: 62-77 [33] Yang LN, Pan ZC, Zhu W, et al. Enhanced agricultural sustainability through within-species diversification. Nature Sustainability, 2019, 2: 46-52 [34] Zhang W, Li XG, Sun K, et al. Mycelial network-media-ted rhizobial dispersal enhances legume nodulation. The ISME Journal, 2020, 14: 1015-1029 [35] Falik O, Reides P, Gersani M, et al. Root navigation by self inhibition. Plant, Cell & Environment, 2005, 28: 562-569 [36] Wang CY, Li LL, Meiners SJ, et al. Root placement patterns in allelopathic plant-plant interactions. New Phytologist, 2023, 237: 563-575 [37] Chen BJW, During HJ, Anten NPR. Detect thy neighbor: Identity recognition at the root level in plants. Plant Science, 2012, 195: 157-167 [38] Falik O, Reides P, Gersani M, et al. Self/non-self discrimination in roots. Journal of Ecology, 2003, 91: 525-531 [39] Ehlers BK, Berg MP, Staudt M, et al. Plant secondary compounds in soil and their role in belowground species interactions. Trends in Ecology & Evolution, 2020, 35: 716-730 [40] Guerrieri E, Rasmann S. Exposing belowground plant communication. Science, 2024, 384: 272-273 [41] Zhalnina K, Louie KB, Hao Z, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiology, 2018, 3: 470-480 [42] Jiang FY, Zhang L, Zhou JC, et al. Arbuscular mycorrhizal fungi enhance mineralization of organic phosphorus by carrying bacteria along their extraradical hyphae. New Phytologist, 2021, 230: 304-315 [43] Lu Y, Wang E, Tang Z, et al. Roots and microbiome jointly drive the distributions of 17 phytohormones in the plant soil continuum in a phytohormone-specific manner. Plant and Soil, 2022, 470: 153-165 [44] Sheflin AM, Kirkwood JS, Wolfe LM, et al. High-throughput quantitative analysis of phytohormones in sorghum leaf and root tissue by ultra-performance liquid chromatography-mass spectrometry. Analytical and Bioanalytical Chemistry, 2019, 411: 4839-4848 [45] Gasperini D, Howe GA. Phytohormones in a universe of regulatory metabolites: Lessons from jasmonate. Plant Physiology, 2024, 195: 135-154 [46] Qiao B, Nie S, Li Q, et al. Quick and in situ detection of different polar allelochemicals in taxus soil by microdialysis combined with UPLC-MS/MS. Journal of Agricultural & Food Chemistry, 2022, 70: 16435-16445 [47] 孔垂华. 植物化感作用研究中应注意的问题. 应用生态学报, 1998, 9(3): 332-336 [48] Coatsworth P, Cotur Y, Naik A, et al. Time-resolved chemical monitoring of whole plant roots with printed electrochemical sensors and machine learning. Science Advances, 2024, 10: eadj6315 [49] Bilas RD, Bretman A, Bennett T. Friends, neighbours and enemies: An overview of the communal and social biology of plants. Plant, Cell & Environment, 2021, 44: 997-1013 [50] 李洁, 孙庚, 胡霞, 等. 植物的亲缘选择. 生态学报, 2014, 34(14): 3827-3838 [51] Mazal L, Fajardo A, Till-Bottraud IT, et al. Kin selection, kin recognition and kin discrimination in plants revisited: A claim for considering environmental and genetic variability. Plant, Cell & Environment, 2023, 46: 2007-2016 [52] Bawa KS. Kin selection and the evolution of plant reproductive traits. Proceedings of the Royal Society B: Biological Sciences, 2016, 283: 20160789 [53] Shivaprakash KN, Bawa KS. The evolution of placentation in flowering plants: A possible role for kin selection. Frontiers in Ecology and Evolution, 2022, 10: 784077 [54] Xu Y, Li FL, Li LL, et al. Discrimination of relatedness drives rice flowering and reproduction in cultivar mixtures. Plant, Cell & Environment, 2024, 47: 4572-4585 [55] Murphy GP, Swanton CJ, Acker RCV, et al. Kin recognition, multilevel selection and altruism in crop sustainability. Journal of Ecology, 2017, 105: 930-934 [56] Anten NPR, Chen BJW. Detect thy family: Mechanisms, ecology, and agricultural aspects of kin recognition in plants. Plant, Cell & Environment, 2021, 44: 1059-1071 [57] Yang XF, Li LL, Xu Y, et al. Kin recognition in rice (Oryza sativa L.) lines. New Phytologist, 2018, 220: 567-578 [58] 邢硕, 何永涛, 牛犇, 等. 垫状点地梅对生长季土壤净氮矿化和酶活性的影响. 资源与生态学报, 2024, 15(2): 422-430 [59] Ding L, Zhao HH, Li HY, et al. Kin recognition in an herbicide-resistant barnyardgrass (Echinochloa crus-galli L.) Biotype. Plants, 2023, 12: 1498 [60] Karban R. Plant behavior and communication. Ecology Letters, 2008, 11: 727-739 [61] Wu CC, Diggle PK, Friedman WE. Kin recognition within a seed and the effect of genetic relatedness of an endosperm to its compatriot embryo on maize seed development. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110: 2217-2222 [62] Zhang L, Liu QY, Tian YQ, et al. Kin selection or resource partitioning for growing with siblings: Implications from measurements of nitrogen uptake. Plant and Soil, 2016, 398: 79-86 [63] Pezzola E, Pandolfi C, Mancuso S. Resource availability affects kin selection in two cultivars of Pisum sativum. Plant Growth Regulation, 2020, 90: 321-329 [64] Baravalle L. How (not) to talk to a plant: An application of automata theory to plant communication. Acta Biotheoretica, 2024, 72: 8 [65] Trewavas A. Plant Behaviour and Intelligence. Oxford, UK: Oxford University Press, 2015 [66] Gagliano M, Renton M, Depczynski M, et al. Experience teaches plants to learn faster and forget slower in environments where it matters. Oecologia, 2014, 175: 63-72 [67] Fréville H, Roumet P, Rode NO, et al. Preferential helping to relatives: A potential mechanism responsible for lower yield of crop variety mixtures? Evolutionary Applications, 2019, 12: 1837-1849 [68] Ryan MR. Crops better when grown together. Nature Sustainability, 2021, 4: 926-927 [69] Panchal P, Preece C, Peñuelas J, et al. 2022. Soil carbon sequestration by root exudates. Trends in Plant Science, 2022, 27: 749-757 [70] Wippel K, Tao K, Niu YL, et al. Host preference and invasiveness of commensal bacteria in the Lotus and Arabidopsis root microbiota. Nature Microbiology, 2021, 6: 1150-1162 [71] Meier IC, Finzi AC, Phillips RP. Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools. Soil Biology & Biochemistry, 2017, 106: 119-128 [72] Panke-Buisse K, Poole AC, Goodrich JK, et al. Selection on soil microbiomes reveals reproducible impacts on plant function. The ISME Journal, 2015, 9: 980-989 [73] Lu T, Ke M, Lavoie M, et al. Rhizosphere microorga-nisms can influence the timing of plant flowering. Microbiome, 2018, 6: 231 [74] Chen X, Li FL, Kong CH. Rhizosphere bacteria mediate flowering time of two genotypes of Arabidopsis with and without root-secreted signaling (-)-loliolide. Rhizosphere, 2023, 27: 100774 [75] Oldroyd GED, Leyser O. A plant’s diet, surviving in a variable nutrient environment. Science, 2020, 368: eaba0196 [76] Cheng WX, Parton WJ, Gonzalez-Meler MA, et al. Synthesis and modeling perspectives of rhizosphere pri-ming. New Phytologist, 2014, 201: 31-44 [77] Macias FA, Mecias, et al. Recent advances in allelopathy for weed control: From knowledge to applications. Pest Management Science, 2019, 75: 2413-2436 [78] Kong CH, Xuan TD, Khanh TD, et al. Allelochemicals and signaling chemicals in plants. Molecules, 2019, 24: 2737 [79] Xu MM, Galhano R, Wiemann P, et al. Genetic evidence for natural product-mediated plant-plant allelopathy in rice (Oryza sativa). New Phytologist, 2012, 193: 570-575 [80] Weston LA, Alsaadawi IS, Baerson SR. Sorghum alle-lopathy-from ecosystem to molecule. Journal of Chemical Ecology, 2013, 39: 142-153 [81] Park S, Choi MJ, Lee JY, et al. Molecular and biochemical analysis of two rice flavonoid 3′-hydroxylase to evaluate their roles in flavonoid biosynthesis in rice grain. International Journal of Molecular Sciences, 2016, 17: 1549-1562 [82] Baldwin IT, Halitschke R, Paschold A, et al. Volatile signaling in plant-plant interactions: “Talking trees” in the genomics era. Science, 2006, 311: 812-815 [83] Heil M, Karban R. Explaining evolution of plant communication by airborne signals. Trends in Ecology & Evolution, 2010, 25: 137-144 [84] Erb M, Veyrat N, Robert CAM, et al. Indole is an essential herbivore-induced volatile priming signal in maize. Nature Communications, 2015, 6: 6273 [85] Moreno JC, Mi, Al-Babili S. Plant apocarotenoids: From retrograde signaling to interspecific communication. The Plant Journal, 2021, 105: 351-375 [86] Murata M, Nakai Y, Kawazu K, et al. Loliolide, a carotenoid metabolite, is a potential endogenous inducer of herbivore resistance. Plant Physiology, 2019, 179: 1822-1833 [87] Li LL, Li Z, Lou YG, et al. (-)-Loliolide is a general signal of plant stress that activates jasmonate-related responses. New Phytologist, 2023, 238: 2099-2112 [88] Li Z, Jia F, Li LL, et al. Root-secreted (-)-loliolide mediates chemical defense in rice and wheat against pests. Pest Management Science, 2024, DOI: 10.1002/ps.8378 [89] Li FL, Chen X, Luo HM, et al. Root-secreted (-)-loliolide modulates both belowground defense and aboveground flowering in Arabidopsis and tobacco. Journal of Experimental Botany, 2023, 74: 964-975 [90] Frost CJ. Information potential of an ubiquitous phytochemical cue. New Phytologist, 2023, 238: 1749-1751 [91] Cascone P, Vuts J, Birkett MA, et al. L-DOPA functions as a plant pheromone for belowground anti-herbivory communication. Ecology Letters, 2023, 26: 460-469 [92] Thorogood C. Amazing plants. Trends in Plant Science, 2020, 25: 833-836 [93] 汤鹏, 于鲁冀, 彭赵旭, 等. 水生植物化感作用抑藻研究进展. 生物学杂志, 2021, 38(4): 104-108 [94] 李元跃, 熊章静, 谭凤仪, 等. 滨海湿地植物对赤潮藻的化感效应研究进展. 沈阳农业大学学报, 2023, 54(2): 239-247 [95] Zhu X, Dao G, Tao Y, et al. A review on control of harmful algal blooms by plant-derived allelochemicals. Journal of Hazardous Materials, 2021, 401: 123403 [96] Liu X, Sun T, Yang W, et al. Meta-analysis to identify inhibition mechanisms for the effects of submerged plants on algae. Journal of Environmental Management, 2024, 355: 120480 |
[1] | 孔垂华. 植物种间和种内的化学作用 [J]. 应用生态学报, 2020, 31(7): 2141-2150. |
[2] | 鄢邵斌, 王朋. 化感物质对植物根系形态属性影响的meta分析 [J]. 应用生态学报, 2020, 31(7): 2168-2174. |
[3] | 李金金, 张健, 张阿娟, 吴娇, 张丹桔. 不同密度巨桉人工林林下植物多样性及根际土壤化感物质 [J]. 应用生态学报, 2020, 31(7): 2175-2184. |
[4] | 张雅倩, 黄蕊, 左林芝, 陈盼, 李蕾. 海南岛不同林龄木麻黄凋落物内外细菌多样性及其化感潜力 [J]. 应用生态学报, 2020, 31(7): 2185-2194. |
[5] | 吴秀华1,李羿桥1,胡庭兴1**,陈保军2,杨永贵2,陈洪1,胡红玲1. 巨桉凋落叶分解初期对菊苣生长和光合特性的影响 [J]. 应用生态学报, 2013, 24(7): 1817-1825. |
[6] | 张晓影1,2,王朋1**,周斌1,2. 冬小麦幼苗生长和化感物质对CO2和O3浓度升高的响应 [J]. 应用生态学报, 2013, 24(10): 2843-2849. |
[7] | 谢明惠;任琴;张青文;刘小侠. 紫茎泽兰根区土壤酚酸类物质组成及其对土传病菌的影响 [J]. 应用生态学报, 2010, 21(2): 306-311. |
[8] | 李 坤,郭修武,郭印山,李成祥,谢洪刚,胡禧熙,张立恒,孙英妮. 葡萄根系浸提液的化感作用 [J]. 应用生态学报, 2010, 21(07): 1779-1784. |
[9] | 肖辉林1,2,3;彭少麟1,4;郑煜基2;莫江明1;罗薇2;曾晓舵2;何小霞2. 植物化感物质及化感潜力与土壤养分的相互影响 [J]. 应用生态学报, 2006, 17(09): 1747-1750 . |
[10] | 何华勤, 沈荔花, 宋碧清, 郭玉春, 梁义元, 梁康迳, 林文雄. 几种化感物质替代物间的互作效应分析 [J]. 应用生态学报, 2005, 16(5): 890-894. |
[11] | 何华勤, 沈荔花, 宋碧清, 郭玉春, 梁义元, 梁康迳, 林文雄. 几种化感物质替代物间的互作效应分析 [J]. 应用生态学报, 2005, 16(5): 890-894. |
[12] | 何海斌, 何华勤, 林文雄, 陈祥旭, 贾小丽, 熊君, 沈荔花, 梁义元. 不同化感水稻品种根系分泌物中萜类化合物的差异分析 [J]. 应用生态学报, 2005, 16(4): 732-736. |
[13] | 何海斌, 陈祥旭, 林瑞余, 林文雄, 何华勤, 贾小丽, 熊君, 沈荔花, 梁义元. 化感水稻PI312777苗期根系分泌物中化学成分分析 [J]. 应用生态学报, 2005, 16(12): 2383-2388. |
[14] | 魏胜林. 高浓度二氧化碳对百合生长和两种化感物质的影响 [J]. 应用生态学报, 2005, 16(1): 111-114. |
[15] | 何华勤;沈荔花;宋碧清;郭玉春;梁义元;梁康迳;林文雄. 几种化感物质替代物间的互作效应分析 [J]. 应用生态学报, 2005, 16(05): 890-894 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||