[1] 金凯, 王飞, 韩剑桥, 等. 1982—2015年中国气候变化和人类活动对植被NDVI变化的影响. 地理学报, 2020, 75(5): 961-974 [2] Ge WY, Deng LQ, Wang F, et al. Quantifying the contributions of human activities and climate change to vegetation net primary productivity dynamics in China from 2001 to 2016. Science of the Total Environment, 2021, 773: 145648 [3] Moura YM, Galvão LS, dos Santos JR, et al. Use of MISR/Terra data to study intra- and inter-annual EVI variations in the dry season of tropical forest. Remote Sensing of Environment, 2012, 127: 260-270 [4] 解晗, 李俊, 同小娟, 等. 2000—2018年黄河流域森林和草地物候的时空变化. 应用生态学报, 2023, 34(3): 647-656 [5] Dubovyk O, Landmann T, Erasmus BFN, et al. Monitoring vegetation dynamics with medium resolution MODIS-EVI time series at sub-regional scale in southern Africa. International Journal of Applied Earth Observation and Geoinformation, 2015, 38: 175-183 [6] 靳峰, 戈文艳, 秦伟, 等. 甘肃省植被时空变化及其未来发展潜力. 中国水土保持科学, 2023, 21(1): 110-118 [7] Vijith H, Dodge-Wan D. Applicability of MODIS land cover and enhanced vegetation index (EVI) for the assessment of spatial and temporal changes in strength of vegetation in tropical rainforest region of Borneo. Remote Sensing Applications: Society and Environment, 2020, 18: 100311 [8] 杨铭鑫, 李俊, 同小娟, 等. 2001—2020年中国森林植被EVI对气候因子的响应. 生态学报, 2024, 44(23): 10850-10863 [9] 冯平, 杨旺, 李建柱, 等. 滦河流域植被覆盖变化及其对自然和人为因素的响应. 应用生态学报, 2025, 36(4): 1222-1232 [10] 海洋, 龙爱华, 王浩, 等. 基于生态重要性和生态脆弱性的干旱区生态保护范围分级管理研究. 中国水利水电科学研究院学报, 2025, 23(2): 131-145 [11] Evans J, Geerken R. Discrimination between climate and human-induced dryland degradation. Journal of Arid Environments, 2004, 57: 535-554 [12] 曹鑫, 辜智慧, 陈晋, 等. 基于遥感的草原退化人为因素影响趋势分析. 植物生态学报, 2006, 30(2): 268-277 [13] Chen LF, Zhang H, Zhang XY, et al. Vegetation changes in coal mining areas: Naturally or anthropogenically driven? Catena, 2022, 208: 105712 [14] 胡博洋, 孙建国, 张倩, 等. 用于植被变化归因的区域机器学习残差趋势法. 自然资源遥感, 2025, 37(1): 46-53 [15] 许丽, 高光耀, 王晓峰, 等. 气候变化和人类活动对中国北方旱区植被变绿的定量贡献. 生态学报, 2023, 43(17): 7274-7283 [16] 马炳鑫, 和彩霞, 靖娟利, 等. 1982—2019年中国西南地区植被变化归因研究. 地理学报, 2023, 78(3): 714-728 [17] Liu XF, Zhu XF, Li SS, et al. Changes in growing season vegetation and their associated driving forces in China during 2001-2012. Remote Sensing, 2015, 7: 15517-15535 [18] 张韬略, 姜亮亮, 刘冰, 等. 中国植被对气候变化的敏感性定量分析. 生态学报, 2025, 45(5): 2412-2423 [19] 中华人民共和国国务院. 关于印发全国主体功能区规划的通知: 国发〔2010〕46号 [EB/OL]. (2011-06-08) [2025-06-16]. https://www.gov.cn/zwgk/2011-06/08/content_1879180.htm [20] 许文鑫, 周玉科, 梁娟珠. 基于变化点的青藏高原植被时空动态变化研究. 遥感技术与应用, 2019, 34(3): 667-676 [21] 李懿超, 沈润平, 黄安奇. 基于深度学习的湘赣鄂地区植被变化及其影响因子关系模型. 江苏农业科学, 2019, 47(3): 1002-1302 [22] Zhang YX, Lu YF, Song XQ. Identifying the main factors influencing significant global vegetation changes. Forests, 2023, 14: 1607 [23] 夏凯, 黄义忠. 三北工程区植被覆盖变化及其对气候变化和人类活动的响应. 西北林学院学报, 2025, 40(1): 133-143 [24] 耿庆玲, 陈晓青, 赫晓慧, 等. 中国不同植被类型归一化植被指数对气候变化和人类活动的响应. 生态学报, 2022, 42(9): 3557-3568 [25] 石智宇, 王雅婷, 赵清, 等. 2001—2020年中国植被净初级生产力时空变化及其驱动机制分析. 生态环境学报, 2022, 31(11): 2111-2123 [26] 马梓策, 于红博, 曹聪明, 等. 中国植被覆盖度时空特征及其影响因素分析. 长江流域资源与环境, 2020, 29(6): 1310-1321 [27] 李霞, 陈永昊, 陈喆, 等. 中国沿海地区植被NDVI时空变化及驱动力分析. 生态环境学报, 2024, 33(2): 180-191 [28] Mu SJ, Zhou SX, Chen YZ, et al. Assessing the impact of restoration-induced land conversion and management alternatives on net primary productivity in Inner Mongo-lian grassland, China. Global and Planetary Change, 2013, 108: 29-41 [29] Shi Y, Jin N, Ma XL, et al. Attribution of climate and human activities to vegetation change in China using machine learning techniques. Agricultural and Forest Meteorology, 2020, 294: 108146 [30] Hu YF, Dao RN, Hu Y. Vegetation change and driving factors: Contribution analysis in the Loess Plateau of China during 2000-2015. Sustainability, 2019, 5: 11 [31] Li Q, Zhang CL, Shen YP, et al. Quantitative assessment of the relative roles of climate change and human activities in desertification processes on the Qinghai-Tibet Plateau based on net primary productivity. Catena, 2016, 147: 789-796 [32] Cao D, Zhang JH, Zhang T, et al. Spatiotemporal variations and driving factors of global terrestrial vegetation productivity gap under the changing of climate, CO2, landcover and N deposition. Science of the Total Environment, 2023, 880: 162753 |