[1] Filazzola A, Matter SF, Mactvor JS. The direct and indirect effects of extreme climate events on insects. Science of the Total Environment, 2021, 769: 145161 [2] Adamo SA. The effects of the stress response on immune function in invertebrates: An evolutionary perspective on an ancient connection. Hormones and Behavior, 2012, 62: 324-330 [3] Nedvěd O. Temperature, effects on development and growth// Resh VH, Cardé RT, eds. Encyclopedia of Insects. 2nd Ed. San Diego, CA, USA: Academic Press, 2009: 990-993 [4] Chen ZZ, Xu LX, Li LL, et al. Effects of constant and fluctuating temperature on the development of the oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae). Bulletin of Entomological Research, 2019, 109: 212-220 [5] 宋修超, 崔宁宁, 郑方强, 等. 变温贮藏僵蚜对烟蚜茧蜂耐寒能力的影响. 应用生态学报, 2012, 23(9): 2515-2520 [6] Mironidis GK. Development, survivorship and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae) under fluctuating temperatures. Bulletin of Entomological Research, 2014, 104: 751-764 [7] Kingsolver JG, Higgins JK, Augustine KE. Fluctuating temperatures and ectotherm growth: Distinguishing non-linear and time-dependent effects. Journal of Experimental Biology, 2015, 218: 2218-2225 [8] Stoks R, Verheyen J, Van Dievel M, et al. Daily temperature variation and extreme high temperatures drive performance and biotic interactions in a warming world. Current Opinion in Insect Science, 2017, 23: 35-42 [9] Xing K, Hoffmann AA, Zhao F, et al. Wide diurnal temperature variation inhibits larval development and adult reproduction in the diamondback moth. Journal of Thermal Biology, 2019, 84: 8-15 [10] Zhong T, Gong L, Pan Y, et al. Performance of Spodoptera litura (Lepidoptera: Noctuidae) in responses to different amplitudes of alternating temperatures across permissive warm temperature regimes. Journal of Economic Entomology, 2024, 117: 1041-1046 [11] 罗礼智, 程云霞, 唐继洪, 等. 温湿度是影响草地螟发生为害规律的关键因子. 植物保护, 2016, 42(4): 1-8 [12] 吕晓飞, 江幸福, 罗礼智. 滞育持续期对草地螟滞育解除后蛹生长发育的影响. 植物保护, 2013, 39(5): 140-143 [13] 陈晓, 姜玉英, 孟正平, 等. 极端气候成为我国草地螟暴发周期终结的重要因子. 昆虫学报, 2016, 59(12): 1363-1375 [14] 唐继洪, 程云霞, 罗礼智, 等. 基于Maxent模型的不同气候变化情景下我国草地螟越冬区预测. 生态学报, 2017, 37(14): 4852-4863 [15] 罗礼智, 李光博. 温度对草地螟成虫产卵和寿命的影响. 昆虫学报, 1993, 36(4): 459-464 [16] 罗礼智, 程云霞, 唐继洪, 等. 草地螟迁飞的原因、目标与对策. 植物保护, 2018, 44(5): 34-41 [17] 唐继洪, 程云霞, 罗礼智, 等. 蛾龄、温度和相对湿度对草地螟自主飞行能力的影响. 植物保护, 2016, 42(2): 79-83 [18] 庞允舜, 李少华, 王荣成, 等. 温度对取食玉米籽粒桃蛀螟生长发育、存活和生殖的影响. 应用生态学报, 2022, 33(6): 1652-1660 [19] Jaafari-Behi V, Ziaee M, Kocheili F, et al. Life-table parameters of Plodia interpunctella (Lepidoptera: Pyra-lidae) on different stored date palm fruits under laboratory conditions. Journal of Insect Science, 2023, 23: 1 [20] 孙丽娟, 于海霞, 郑长英. 4种蚜虫对异色瓢虫生长发育和繁殖的影响. 应用生态学报, 2020, 31(10): 3554-3558 [21] Chi H, Liu H. Two new methods for study of insect popu-lation ecology. Bulletin of the Institute of Zoology, Academia Sinica, 1984, 24: 225-240 [22] 齐心, 傅建炜, 尤民生. 年龄-龄期两性生命表及其在种群生态学与害虫综合治理中的应用. 昆虫学报, 2019, 62(2): 255-262 [23] Chi H, Güncan A, Kavousi A, et al. TWOSEX-MSChart: The key tool for life table research and education. Entomologia Generalis, 2022, 42: 845-849 [24] Morash AJ, Neufeld C, Maccormack TJ, et al. The importance of incorporating natural thermal variation when evaluating physiological performance in wild species. Journal of Experimental Biology, 2018, 221: jeb164673 [25] Denny M. The fallacy of the average: On the ubiquity, utility and continuing novelty of Jensen’s inequality. Journal of Experimental Biology, 2017, 220: 139-146 [26] Couret J, Dotson E, Benedict MQ. Temperature, larval diet, and density effects on development rate and survi-val of Aedes aegypti (Diptera: Culicidae). PLoS One, 2014, 9(2): e87468 [27] Fischer K, Kölzow N, Höltje H, et al. Assay conditions in laboratory experiments: Is the use of constant rather than fluctuating temperatures justified when investigating temperature-induced plasticity? Oecologia, 2011, 166: 23-33 [28] Karl I, Fischer K. Why get big in the cold? Towards a solution to a life-history puzzle. Oecologia, 2008, 155: 215-225 [29] Zhang W, Chang XQ, Hoffmann A, et al. Impact of hot events at different developmental stages of a moth: The closer to adult stage, the less reproductive output. Scientific Reports, 2015, 5: 10436 [30] Cheng Y, Wang K, Sappington TW, et al. Response of reproductive traits and longevity of beet webworm to temperature, and implications for migration. Journal of Insect Science, 2015, 15: 154 [31] Vangansbeke D, De Schrijver L, Spranghers T, et al. Alternating temperatures affect life table parameters of Phytoseiulus persimilis, Neoseiulus californicus (Acari: Phytoseiidae) and their prey Tetranychus urticae (Acari: Tetranychidae). Experimental and Applied Acarology, 2013, 61: 285-298 [32] Cheng LY, Zhang Y, Chen ZZ, et al. Effects of constant and fluctuating temperatures on development and reproduction of Megoura crassicauda and Aphis craccivora (Hemiptera: Aphididae). Entomologica Fennica, 2018, 29: 1-12 [33] Walsh BS, Parratt SR, Hoffmann AA, et al. The impact of climate change on fertility. Trends in Ecology & Evolution, 2019, 34: 249-259 [34] Tang J, Cheng Y, Sappington TW, et al. Egg hatch and survival and development of beet webworm (Lepidop-tera: Crambidae) larvae at different combinations of temperature and relative humidity. Journal of Economic Entomology, 2016, 109: 1603-1611 [35] Schoeller EN, Redak RA. Temperature-dependent development and survival of giant whitefly Aleurodicus dugesii (Hemiptera: Aleyrodidae) under constant temperatures. Environmental Entomology, 2018, 47: 1586-1595 [36] 张熠玚, 刘杰, 赵素梅, 等. 2021年我国草地螟发生特点与原因分析. 应用昆虫学报, 2022, 59(6): 1372-1384 [37] Colvin J, Gatehouse AG. Migration and the effect of three environmental factors on the pre-reproductive period of the cotton-boliworm moth, Helicoverpa armigera. Physiological Entomology, 1993, 18: 109-113 |