[1] 马恩朴, 蔡建明, 林静, 等. 2000—2014年全球粮食安全格局的时空演化及影响因素. 地理学报, 2020, 75(2): 332-347 [2] Khalid MF, Huda S, Yong M, et al. Alleviation of drought and salt stress in vegetables: Crop responses and mitigation strategies. Plant Growth Regulation, 2023, 99: 177-194 [3] 杨劲松, 姚荣江, 王相平, 等. 中国盐渍土研究: 历程、现状与展望. 土壤学报, 2022, 59(1): 10-27 [4] 李星佑, 张飞, 王筝. 土壤盐渍化遥感监测模型构建方法现状与发展趋势. 自然资源遥感, 2022, 34(4): 11-21 [5] 杜瑞麒, 陈俊英, 张智韬, 等. Sentinel-2多光谱卫星遥感反演植被覆盖下的土壤盐分变化. 农业工程学报, 2021, 37(17): 107-115 [6] Delavar MA, Naderi A, Ghorbani Y, et al. Soil salinity mapping by remote sensing south of Urmia Lake, Iran. Geoderma Regional, 2020, 22: e00317 [7] 刘潜, 王梦迪, 郭龙, 等. 基于机载高光谱影像的农田尺度土壤有机碳密度制图. 遥感学报, 2024, 28(1): 293-305 [8] Wang ZY, Ding JL, Tan J, et al. UAV hyperspectral analysis of secondary salinization in arid oasis cotton fields: Effects of FOD feature selection and SOA-RF. Frontiers in Plant Science, 2024, 15: 1358965 [9] Zhang ZX, Zhu LX. A review on unmanned aerial vehicle remote sensing: Platforms, sensors, data processing methods, and applications. Drones, 2023, 7: 398 [10] Zhang F, Li XY, Zhou XH, et al. Retrieval of soil salinity based on multi-source remote sensing data and differential transformation technology. International Journal of Remote Sensing, 2023, 44: 1348-1368 [11] Zhou Q, Ding JL, Ge XY, et al. Estimation of soil organic matter in the Ogan-Kuqa River Oasis, Northwest China, based on visible and near-infrared spectroscopy and machine learning. Journal of Arid Land, 2023, 15: 191-204 [12] 郭鹏, 赵阳, 孙子皓, 等. 基于CARS-PLSR算法的土壤有效磷高光谱反演研究. 中国农业信息, 2023, 35(1): 55-66 [13] 梁欣廉, 李海涛, 张继贤. 未辐射校正高光谱数据应用于分类的可行性分析: 应用光谱角制图法. 测绘科学, 2004, 29(4): 37-39 [14] 梁继, 王建, 王建华. 基于光谱角分类器遥感影像的自动分类和精度分析研究. 遥感技术与应用, 2002, 17(6): 299-303 [15] 杨随心, 耿修瑞, 杨炜暾, 等. 一种基于谱聚类算法的高光谱遥感图像分类方法. 中国科学院大学学报, 2019, 36(2): 267-274 [16] 朱连江, 马炳先, 赵学泉. 基于轮廓系数的聚类有效性分析. 计算机应用, 2010, 30(增刊2): 139-141 [17] Maresma A, Chamberlain L, Tagarakis A, et al. Accuracy of NDVI-derived corn yield predictions is impacted by time of sensing. Computers and Electronics in Agriculture, 2020, 169: 105236 [18] 陈君颖, 田庆久. 高分辨率遥感植被分类研究. 遥感学报, 2007, 11(2): 221-227 [19] 袁欣智, 江洪, 陈芸芝, 等. 一种应用大津法的自适应阈值水体提取方法. 遥感信息, 2016, 31(5): 36-42 [20] Li HD, Liang YZ, Xu QS, et al. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Analytica Chimica Acta, 2009, 648: 77-84 [21] 李金超, 张晖, 马卫春, 等. 基于支持向量机的星载GNSS-R土壤湿度反演方法. 地球物理学进展, 2023, 38(5): 1960-1966 [22] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述. 计算机学报, 2017, 40(6): 1229-1251 [23] Dai LJ, Ge JS, Wang LQ, et al. Influence of soil pro-perties, topography, and land cover on soil organic carbon and total nitrogen concentration: A case study in Qinghai-Tibet Plateau based on random forest regression and structural equation modeling. Science of the Total Environment, 2022, 821: 153440 [24] Abrol IP, Yadav JSP, Massoud FI. Salt-affected soils and their management. 39. Rome: Food and Agriculture Organization of the United Nations, 1988: 17-18 [25] Hassani A, Azapagic A, Shokri N. Predicting long-term dynamics of soil salinity and sodicity on a global scale. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117: 33017-33027 [26] Ivushkin K, Bartholomeus H, Bregt AK, et al. Soil salinity assessment through satellite thermography for different irrigated and rainfed crops. International Journal of Applied Earth Observation and Geoinformation, 2018, 68: 230-237 [27] 汤煜, 石铁矛, 卜英杰, 等. 城市绿地碳储量估算及空间分布特征. 生态学杂志, 2020, 39(4): 1387-1398 [28] 王怡婧, 丁启东, 张俊华, 等. 基于无人机高光谱遥感和机器学习的土壤水盐信息反演. 应用生态学报, 2023, 34(11): 3045-3052 [29] Ma SL, He BZ, Xie BQ, et al. Investigation of the spatial and temporal variation of soil salinity using Google Earth Engine: A case study at Werigan-Kuqa Oasis, West China. Scientific Reports, 2023, 13: 2754 [30] Ma CY, Liu X, Li SQ, et al. Accuracy evaluation of hyperspectral inversion of environmental parameters of loess profile. Environmental Earth Sciences, 2023, 82: 251 [31] 杨晗, 曹见飞, 王召海, 等. 可见-近红外光谱的滨海土壤“除水”盐分估测. 光谱学与光谱分析, 2021, 41(10): 3077-3082 [32] Zhang HR, Fu X, Zhang YN, et al. Mapping multi-depth soil salinity using remote sensing-enabled machine learning in the Yellow River Delta, China. Remote Sen-sing, 2023, 15: 5640 [33] 吴俊, 郭大千, 李果, 等. 基于CARS-BPNN的江西省土壤有机碳含量高光谱预测. 中国农业科学, 2022, 55(19): 3738-3750 [34] 张智韬, 魏广飞, 姚志华, 等. 基于无人机多光谱遥感的土壤含盐量反演模型研究. 农业机械学报, 2019, 50(12): 151-160 [35] Allbed A, Kumar L, Aldakheel YY. Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region. Geoderma, 2014, 230: 1-8 [36] Mohammedzein MA, Csorbaa, Rotich B, et al. Development of Hungarian spectral library: Prediction of soil properties and applications. Eurasian Journal of Soil Science, 2023, 12: 244-256 [37] 张智韬, 陈钦达, 黄小鱼, 等. 基于加权算法的空-天遥感升尺度土壤含盐量监测模型. 农业机械学报, 2022, 53(9): 226-238 [38] Jia PP, He W, Hu Y, et al. Inversion of coastal cultivated soil salt content based on multi-source spectra and environmental variables. Soil and Tillage Research, 2024, 241: 106124 [39] 张诗祁, 牛文全, 李国春. 关中平原田间土壤含水量的空间变异性. 应用生态学报, 2020, 31(3): 821-828 [40] Málicke M. SciKit-GStat 1.0: A SciPy-flavored geostatistical variogram estimation toolbox written in Python. Geoscientific Model Development, 2022, 15: 2505-2532 [41] Sun XL, Yang Q, Wang HL, et al. Can regression determination, nugget-to-sill ratio and sampling spacing determine relative performance of regression kriging over ordinary kriging? Catena, 2019, 181: 104092 |