[1] 闫明, 陈利顶, 孙然好. 城市生态品质的内涵及其核心指标体系构建. 应用生态学报, 2023, 34(6): 1459-1466 [2] Neyns R, Canters F. Mapping of urban vegetation with high-resolution remote sensing: A review. Remote Sen-sing, 2022, 14: 1031 [3] Shahtahmassebi AR, Li C, Fan Y, et al. Remote sen-sing of urban green spaces: A review. Urban Forestry & Urban Greening, 2021, 57: 126946 [4] Qian Y, Zhou W, Nytch CJ, et al. A new index to differentiate tree and grass based on high resolution image and object-based methods. Urban Forestry & Urban Greening, 2020, 53: 126661 [5] Men G, He G, Wang G. Concatenated residual attention UNet for semantic segmentation of urban green space. Forests, 2021, 12: 1441 [6] 辛动军, 袁梦, 陈建安, 等. 基于FDCT与ELM的遥感影像湿地类型分类: 以黄家湖国家湿地公园为例. 中南林业科技大学学报, 2018, 38(6): 30-35 [7] 赵庆展, 江萍, 王学文, 等. 基于无人机高光谱遥感影像的防护林树种分类. 农业机械学报, 2021, 52(11): 190-199 [8] 李哲, 张沁雨, 邱新彩, 等. 基于高分二号遥感影像树种分类的时相及方法选择. 应用生态学报, 2019, 30(12): 4059-4070 [9] 王佳玥, 蔡志文, 王文静, 等. 协同多源国产高分影像和面向对象方法的南方农作物遥感识别. 中国农业科学, 2023, 56(13): 2474-2490 [10] 薛明, 韦波, 李景文, 等. 优化BP神经网络的多特征融合遥感影像分类方法. 测绘科学, 2021, 46(11): 47-55 [11] 冯权泷, 牛博文, 朱德海, 等. 土地利用/覆被深度学习遥感分类研究综述. 农业机械学报, 2022, 53(3): 1-17 [12] Han W, Zhang XH, Wang Y, et al. A survey of machine learning and deep learning in remote sensing of geological environment: Challenges, advances, and opportunities. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 202: 87-113 [13] Xu ZY, Zhou Y, Wang SX, et al. A novel intelligent classification method for urban green space based on high-resolution remote sensing images. Remote Sensing, 2020, 12: 3845 [14] Chen SQ, Chen M, Zhao BY, et al. Urban tree canopy mapping based on double-branch convolutional neural network and multi-temporal high spatial resolution satellite imagery. Remote Sensing, 2023, 15: 765 [15] 陈婕, 刘纪平, 徐胜华. 增强边缘信息的全卷积神经网络遥感影像建筑物变化检测. 测绘通报, 2023(6): 61-67 [16] Zunair H, Hamza AB. Sharp U-Net: Depthwise convolutional network for biomedical image segmentation. Computers in Biology and Medicine, 2021, 136: 104699 [17] 王晶, 高帅, 郭亮, 等. 基于多尺度特征融合的U-Net网络高分影像不透水面提取研究. 遥感技术与应用, 2022, 37(4): 811-819 [18] Zhang XL, Wang ZS, Zhang JH, et al. MSANet: An improved semantic segmentation method using multi-scale attention for remote sensing images. Remote Sen-sing Letters, 2022, 13: 1249-1259 [19] Wang ZG, Wang QN, Zhang YJ, et al. Enhanced seismic data segmentation using an assembled scSE-Res-UNet deep neural network. Geoenergy Science and Engineering, 2023, 231: 212347 [20] Wang JQ, Chen K, Xu R, et al. Carafe: Content-aware reassembly of features. Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 2019: 3007-3016 [21] Cao YY, Zhao ZX, Huang Y, et al. Case instance segmentation of small farmland based on Mask R-CNN of feature pyramid network with double attention mechanism in high resolution satellite images. Computers and Electronics in Agriculture, 2023, 212: 108073 [22] Bartoldson B, Morcos A, Barbu A, et al. The generalization-stability tradeoff in neural network pruning. Advances in Neural Information Processing Systems, 2020, 33: 20852-20864 [23] LeCun Y, Boser B, Denker JS, et al. Back propagation applied to handwritten zip code recognition. Neural Computation, 1989, 1: 541-551 [24] 中华人民共和国国家质量监督检验检疫总局. GB/T 21010—2017: 土地利用现状分类. 北京: 中国标准出版社, 2017 [25] Yang QR, Ku T, Hu KY. Efficient attention pyramid network for semantic segmentation. IEEE Access, 2021, 9: 18867-18875 [26] 张亚茹, 孔雅婷, 刘彬. 多维注意力特征聚合立体匹配算法. 自动化学报, 2022, 48(7): 1805-1815 [27] 李龙, 张重阳. 基于改进YOLOv3的车辆尾灯检测方法. 计算机与现代化, 2021(7): 89-94 [28] 孙志同, 朱珊娜, 高郑杰, 等. 基于波段增强的DeepLabv3+多光谱影像葡萄种植区识别. 农业工程学报, 2022, 38(7): 229-236 [29] 徐知宇, 周艺, 王世新, 等. 面向GF-2遥感影像的U-Net城市绿地分类. 中国图象图形学报, 2021, 26(3): 700-713 [30] 何直蒙, 丁海勇, 安炳琪. 高分辨率遥感影像建筑物提取的空洞卷积E-Unet算法. 测绘学报, 2022, 51(3): 457-467 [31] 申传庆, 王凯, 王文杰. 基于ResNet-UNet的地表覆盖自动分类技术研究. 地理空间信息, 2023, 21(6): 21-23 [32] 袁德宝, 王子林, 李雪莹, 等. 基于改进U-Net的遥感影像城镇绿地提取. 遥感信息, 2023, 38(1): 33-39 [33] Zhang XY, Zhou XY, Lin MX, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New York, United States, 2018: 6848-6856 [34] Chen YP, Kalantidis Y, Li JS, et al. A2-nets: Double attention networks. 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada, 2018, http://arxiv.org/pdf/1810.11579.pdf [35] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New York, United States, 2016: 770-778 |