[1] Smith SE, Read DJ. Mycorrhizal Symbiosis. 3rd Ed. San Diego, CA, USA: Academic Press, 2008: 191-268 [2] Chen WL, Koide RT, Eissenstat DM. Root morphology and mycorrhizal type strongly influence root production in nutrient hot spots of mixed forests. Journal of Eco-logy, 2018, 106: 148-156 [3] Van der Linde S, Suz LM, Orme DL, et al. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature, 2018, 558: 243-248 [4] Agerer R. Exploration types of ectomycorrhizae: A proposal to classify ectomycorrhizal mycelial system accor-ding to their patterns of differentiation and putative ecological importance. Mycorrhiza, 2001, 11: 107-114 [5] Van der Heijden MGA, Kironomos JN, Ursic M, et al. Mycorrhizal fungal diversity determines plant biodiver-sity, ecosystem variability and productivity. Nature, 1998, 396: 69-72 [6] Anthony MA, Crowther TW, van der Linde S, et al. Forest tree growth is linked to mycorrhizal fungal composition and function across Europe. The ISME Journal, 2022, 16: 1327-1336 [7] Read DJ, Perez-Moreno J. Mycorrhizas and nutrient cycling in ecosystems: A journey towards relevance? New Phytologist, 2003, 157: 475-492 [8] Hobbie EA, Agerer R. Nitrogen isotopes in ectomycorrhizal sporocarps correspond to belowground exploration types. Plant and Soil, 2010, 327: 71-83 [9] 刘慧敏. 山西太岳山华北落叶松人工林土壤性质及地力评价研究. 硕士论文. 北京: 北京林业大学, 2021 [10] 余敏, 周志勇, 康峰峰, 等. 山西灵空山小蛇沟林下草本层植物群落梯度分析及环境解释. 植物生态学报, 2013, 37(5): 373-383 [11] 王甜, 康峰峰, 韩海荣, 等. 山西太岳山小流域土壤水分空间异质性及其影响因子. 生态学报, 2017, 37(11): 3902-3911 [12] 霍萌萌, 郭东罡, 张婕, 等. 灵空山油松-辽东栎林乔木树种群落学特征及空间分布格局. 生态学报, 2014, 34(26): 5925-5935 [13] 韩海荣, 南海龙, 刘宏文, 等. 山西太岳山典型暖温带森林林隙更新多样性研究. 北京林业大学学报, 2005(增刊2): 116-119 [14] 惠刚盈, 胡艳波. 混交林树种空间隔离程度表达方式的研究. 林业科学研究, 2001(1): 23-27 [15] Köhle J, Yang N, Pena R, et al. Ectomycorrhizal fungal diversity increases phosphorus uptake efficiency of European beech. New Phytologist, 2018, 220: 1200-1210 [16] Schafer JL, Mack MC. Short-term effects of fire on soil and plant nutrients in palmetto flatwoods. Plant and Soil, 2010, 334: 433-447 [17] Gallaher RN, Weldon CO, Boswell FC. A semi-automated procedure for total nitrogen in plant and soil samples. Soil Science Society of America Journal, 1976, 40: 887-889 [18] Agerer R. Fungal relationships and structural identity of their ectomycorrhizae. Mycological Progress, 2006, 5: 67-107 [19] Matsuda Y, Hijii N. Ectomycorrhizal fungal communities in an Abies firma forest, with special reference to ectomycorrhizal associations between seedlings and mature trees. Canadian Journal of Botany, 2004, 82: 822-829 [20] 陈璐璐, 冯秋红, 孙建新. 川西亚高山岷江冷杉外生菌根形态随海拔梯度的分化. 应用生态学报, 2020, 31(9): 2911-2922 [21] Taylor DL, Hollingsworth TN, McFarland JW, et al. A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. Ecological Monographs, 2014, 84: 3-20 [22] Van der Heijden MGA, Bardgett RD, Van Straalen NM. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Eco-logy Letters, 2008, 11: 296-310 [23] Fernandez CW, Nguyen NH, Stefanski A, et al. Ectomycorrhizal fungal response to warming is linked to poor host performance at the boreal-temperate ecotone. Global Change Biology, 2014, 23: 1598-1609 [24] Högberg MN, Briones MJI, Keel SG, et al. Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest. New Phytologist, 2010, 187: 485-493 [25] Näsholm T, Högberg P, Franklin O, et al. Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests? New Phytologist, 2013, 198: 214-221 [26] Hasselquist NJ, Metcalfe DB, Inselsbacher E, et al. Greater carbon allocation to mycorrhizal fungi reduces tree nitrogen uptake in a boreal forest. Ecology, 2016, 97: 1012-1022 [27] Tedersoo L, Naadel T, Bahram M, et al. Enzymatic activities and stable isotope patterns of ectomycorrhizal fungi in relation to phylogeny and exploration types in an afrotropical rain forest. New Phytologist, 2012, 195: 832-843 [28] Timling I, Dahlberg A, Walker DA, et al. Distribution and drivers of ectomycorrhizal fungal communities across the North American Arctic. Ecosphere, 2012, 3: 1-25 [29] Timling I, Taylor DL. Peeking through a frosty window: Molecular insights into the ecology of Arctic soil fungi. Fungal Ecology, 2012, 5: 419-429 [30] Timling I, Walker DA, Nusbaum C, et al. Rich and cold: Diversity, distribution and drivers of fungal communities in patterned-ground ecosystems of the North American Arctic. Molecular Ecology, 2014, 23: 3258-3272 [31] Pellitier PT, Van Nuland M, Salamov A, et al. Potential for functional divergence in ectomycorrhizal fungal communities across a precipitation gradient. ISME Communications, 2024, 4: https://doi.org/10.1890/ES12-00217.1 [32] Hobbie EA, Högberg P. Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. New Phytologist, 2012, 196: 367-382 [33] Carteron A, Vellend M, Laliberté E. Mycorrhizal dominance reduces local tree species diversity across US forests. Nature Ecology & Evolution, 2022, 6: 370-374 [34] Yuan BC, Yue DX. Soil microbial and enzymatic activities across a chronosequence of Chinese pine plantation development on the loess plateau of China. Pedosphere, 2012, 22: 1-12 |