欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2026, Vol. 37 ›› Issue (1): 263-272.doi: 10.13287/j.1001-9332.202601.036

• 研究论文 • 上一篇    下一篇

基于改进YOLOv8n模型的河湖鸟类智能识别方法

王俊文1, 张政银2, 刘畅2, 刘子锋3, 祁皓然3, 赵峙尧4*   

  1. 1中国矿业大学(北京)人工智能学院, 北京 100083;
    2中国矿业大学(北京)理学院, 北京 100083;
    3北京化工大学信息科学与技术学院, 北京 100029;
    4北京工商大学计算机与人工智能学院, 北京 100048
  • 收稿日期:2025-07-07 修回日期:2025-12-03 发布日期:2026-07-18
  • 通讯作者: *E-mail: zhaozy@btbu.edu.cn
  • 作者简介:王俊文, 女, 2004年生, 本科生。主要从事计算机视觉研究。E-mail: 2210410106@student.cumtb.edu.cn
  • 基金资助:
    北京市高层次创新创业人才支持计划科技新星计划项目(20240484720)

Intelligent identification method of river and lake birds based on improved YOLOv8n model

WANG Junwen1, ZHANG Zhengyin2, LIU Chang2, LIU Zifeng3, QI Haoran3, ZHAO Zhiyao4*   

  1. 1School of Artificial Intelligence, China University of Mining &Technology-Beijing, Beijing 100083, China;
    2School of Science, China University of Mining & Technology-Beijing, Beijing 100083, China;
    3College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China;
    4School of Computer and Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China
  • Received:2025-07-07 Revised:2025-12-03 Published:2026-07-18

摘要: 为解决鸟类目标识别算法轻量化与高精度的平衡问题,针对河湖环境中鸟类目标体积小、分布稀疏及背景复杂的特点,本研究基于原始模型YOLOv8n提出一种改进模型YOLOv8-MAT-2H。首先,引入多尺度特征模块(MSBlock),增强对鸟类特征的表示能力。其次,采用自适应下采样模块(ADown)强化边缘及细粒度特征提取。然后,使用减少检测头(Reduced Head)剪裁P5分支,显著减少参数量和计算成本。最后,在损失函数中引入自适应阈值焦点损失(ATFL),使模型更关注难识别目标。利用包含17类19003张图像的数据集进行实际测试。结果表明: YOLOv8-MAT-2H将原始模型的平均准确率均值由0.704提升至0.722,参数量从3.01 M降至2.41 M,每秒千兆浮点运算数从8.1降至7.3,在保持每秒714.3帧实时检测性能的同时,显著提升了对小目标和复杂背景的响应能力,为河湖鸟类智能监测系统的边缘部署提供了高效实用的解决方案。

关键词: 目标检测, 河湖鸟类识别, 轻量化YOLOv8, 数据增强

Abstract: To address the challenge of balancing lightweight design and high accuracy in bird target recognition algorithms, we developed an improved model named YOLOv8-MAT-2H based on YOLOv8n, by fully considering the small size, sparse distribution, and complex backgrounds of birds in river and lake environments. First, we introduced the multi-scale feature module (MSBlock) to enhance the representation capability of bird features. Second, we adopted the adaptive down-sampling module (ADown) to strengthen extraction of edge and fine-grained features. Then, we employed a reduced detection head (Reduced Head) to trim the P5 branch, which significantly reduced parameter count and computational cost. Finally, we incorporated the adaptive-threshold focal loss (ATFL) into the loss function, so the model focused more on hard-to-detect targets. We conducted actual testing on a dataset containing 19003 images across 17 categories. The results showed that our model increased the mean value of average precision from 0.704 to 0.722, reduced parameters from 3.01 M to 2.41 M, and decreased giga floating-point operations per second from 8.1 to 7.3. Our approach could maintain real-time detection performance at 714.3 frames per second, and significantly enhanced responsiveness to small targets and complex backgrounds, providing an efficient and practical solution for deploying intelligent bird monitoring systems on edge devices in river and lake environments.

Key words: object detection, river and lake bird recognition, lightweight YOLOv8, data augmentation